To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Steinberg representation

From Wikipedia, the free encyclopedia

In mathematics, the Steinberg representation, or Steinberg module or Steinberg character, denoted by St, is a particular linear representation of a reductive algebraic group over a finite field or local field, or a group with a BN-pair. It is analogous to the 1-dimensional sign representation ε of a Coxeter or Weyl group that takes all reflections to –1.

For groups over finite fields, these representations were introduced by Robert Steinberg (1951, 1956, 1957), first for the general linear groups, then for classical groups, and then for all Chevalley groups, with a construction that immediately generalized to the other groups of Lie type that were discovered soon after by Steinberg, Suzuki and Ree. Over a finite field of characteristic p, the Steinberg representation has degree equal to the largest power of p dividing the order of the group.

The Steinberg representation is the Alvis–Curtis dual of the trivial 1-dimensional representation.

Matsumoto (1969), Shalika (1970), and Harish-Chandra (1973) defined analogous Steinberg representations (sometimes called special representations) for algebraic groups over local fields. For the general linear group GL(2), the dimension of the Jacquet module of a special representation is always one.

YouTube Encyclopedic

  • 1/3
    Views:
    661
    1 437 165
    168 831
  • The representation theory of triangularizable monoids
  • Multiplication Trick | Full-Time Kid | PBS Parents
  • Taylor Mali, "Words and Their Consequences"

Transcription

The Steinberg representation of a finite group

  • The character value of St on an element g equals, up to sign, the order of a Sylow subgroup of the centralizer of g if g has order prime to p, and is zero if the order of g is divisible by p.
  • The Steinberg representation is equal to an alternating sum over all parabolic subgroups containing a Borel subgroup, of the representation induced from the identity representation of the parabolic subgroup.[1]
  • The Steinberg representation is both regular and unipotent, and is the only irreducible regular unipotent representation (for the given prime p).
  • The Steinberg representation is used in the proof of Haboush's theorem (the Mumford conjecture).

Most finite simple groups have exactly one Steinberg representation. A few have more than one because they are groups of Lie type in more than one way. For symmetric groups (and other Coxeter groups) the sign representation is analogous to the Steinberg representation. Some of the sporadic simple groups act as doubly transitive permutation groups so have a BN-pair for which one can define a Steinberg representation, but for most of the sporadic groups there is no known analogue of it.

The Steinberg representation of a p-adic group

Matsumoto (1969), Shalika (1970), and Harish-Chandra (1973) introduced Steinberg representations for algebraic groups over local fields. Casselman (1973) showed that the different ways of defining Steinberg representations are equivalent. Borel & Serre (1976) and Borel (1976) showed how to realize the Steinberg representation in the cohomology group Hl
c
(X) of the Bruhat–Tits building of the group.

References

  1. ^ (Cotner 2021, [1])
This page was last edited on 10 January 2024, at 20:03
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.