To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Stable manifold theorem

From Wikipedia, the free encyclopedia

In mathematics, especially in the study of dynamical systems and differential equations, the stable manifold theorem is an important result about the structure of the set of orbits approaching a given hyperbolic fixed point. It roughly states that the existence of a local diffeomorphism near a fixed point implies the existence of a local stable center manifold containing that fixed point. This manifold has dimension equal to the number of eigenvalues of the Jacobian matrix of the fixed point that are less than 1.[1]

YouTube Encyclopedic

  • 1/3
    Views:
    5 008
    8 998
    17 621
  • Mod-01 Lec-04 Stable and unstable manifolds
  • Lecture - 20 Stable and Unstable Manifolds
  • Lecture - 30 Lyapunou Function and Centre Manifold Theory

Transcription

Stable manifold theorem

Let

be a smooth map with hyperbolic fixed point at . We denote by the stable set and by the unstable set of .

The theorem[2][3][4] states that

  • is a smooth manifold and its tangent space has the same dimension as the stable space of the linearization of at .
  • is a smooth manifold and its tangent space has the same dimension as the unstable space of the linearization of at .

Accordingly is a stable manifold and is an unstable manifold.

See also

Notes

  1. ^ Shub, Michael (1987). Global Stability of Dynamical Systems. Springer. pp. 65–66.
  2. ^ Pesin, Ya B (1977). "Characteristic Lyapunov Exponents and Smooth Ergodic Theory". Russian Mathematical Surveys. 32 (4): 55–114. Bibcode:1977RuMaS..32...55P. doi:10.1070/RM1977v032n04ABEH001639. S2CID 250877457. Retrieved 2007-03-10.
  3. ^ Ruelle, David (1979). "Ergodic theory of differentiable dynamical systems". Publications Mathématiques de l'IHÉS. 50: 27–58. doi:10.1007/bf02684768. S2CID 56389695. Retrieved 2007-03-10.
  4. ^ Teschl, Gerald (2012). Ordinary Differential Equations and Dynamical Systems. Providence: American Mathematical Society. ISBN 978-0-8218-8328-0.

References

  • Perko, Lawrence (2001). Differential Equations and Dynamical Systems (Third ed.). New York: Springer. pp. 105–117. ISBN 0-387-95116-4.
  • Sritharan, S. S. (1990). Invariant Manifold Theory for Hydrodynamic Transition. John Wiley & Sons. ISBN 0-582-06781-2.

External links

This page was last edited on 29 March 2023, at 22:08
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.