To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Serre's modularity conjecture

From Wikipedia, the free encyclopedia

Serre's modularity conjecture
FieldAlgebraic number theory
Conjectured byJean-Pierre Serre
Conjectured in1975
First proof byChandrashekhar Khare
Jean-Pierre Wintenberger
First proof in2008

In mathematics, Serre's modularity conjecture, introduced by Jean-Pierre Serre (1975, 1987), states that an odd, irreducible, two-dimensional Galois representation over a finite field arises from a modular form. A stronger version of this conjecture specifies the weight and level of the modular form. The conjecture in the level 1 case was proved by Chandrashekhar Khare in 2005,[1] and a proof of the full conjecture was completed jointly by Khare and Jean-Pierre Wintenberger in 2008.[2]

YouTube Encyclopedic

  • 1/5
    Views:
    1 012
    344
    852
    10 687
    930
  • Serre's Conjectures - Benedict Gross
  • Modularity of Galois Representations - Chandrashekhar Khare
  • Ribet's Theorem - Benedict Gross
  • Elliptic curves and modular forms
  • Iwasawa theory for the symmetric square of a modular form - David Loeffler

Transcription

Formulation

The conjecture concerns the absolute Galois group of the rational number field .

Let be an absolutely irreducible, continuous, two-dimensional representation of over a finite field .

Additionally, assume is odd, meaning the image of complex conjugation has determinant -1.

To any normalized modular eigenform

of level , weight , and some Nebentype character

,

a theorem due to Shimura, Deligne, and Serre-Deligne attaches to a representation

where is the ring of integers in a finite extension of . This representation is characterized by the condition that for all prime numbers , coprime to we have

and

Reducing this representation modulo the maximal ideal of gives a mod representation of .

Serre's conjecture asserts that for any representation as above, there is a modular eigenform such that

.

The level and weight of the conjectural form are explicitly conjectured in Serre's article. In addition, he derives a number of results from this conjecture, among them Fermat's Last Theorem and the now-proven Taniyama–Weil (or Taniyama–Shimura) conjecture, now known as the modularity theorem (although this implies Fermat's Last Theorem, Serre proves it directly from his conjecture).

Optimal level and weight

The strong form of Serre's conjecture describes the level and weight of the modular form.

The optimal level is the Artin conductor of the representation, with the power of removed.

Proof

A proof of the level 1 and small weight cases of the conjecture was obtained in 2004 by Chandrashekhar Khare and Jean-Pierre Wintenberger,[3] and by Luis Dieulefait,[4] independently.

In 2005, Chandrashekhar Khare obtained a proof of the level 1 case of Serre conjecture,[5] and in 2008 a proof of the full conjecture in collaboration with Jean-Pierre Wintenberger.[6]

Notes

  1. ^ Khare, Chandrashekhar (2006), "Serre's modularity conjecture: The level one case", Duke Mathematical Journal, 134 (3): 557–589, doi:10.1215/S0012-7094-06-13434-8.
  2. ^ Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (I)", Inventiones Mathematicae, 178 (3): 485–504, Bibcode:2009InMat.178..485K, CiteSeerX 10.1.1.518.4611, doi:10.1007/s00222-009-0205-7 and Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (II)", Inventiones Mathematicae, 178 (3): 505–586, Bibcode:2009InMat.178..505K, CiteSeerX 10.1.1.228.8022, doi:10.1007/s00222-009-0206-6.
  3. ^ Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "On Serre's reciprocity conjecture for 2-dimensional mod p representations of Gal(Q/Q)", Annals of Mathematics, 169 (1): 229–253, doi:10.4007/annals.2009.169.229.
  4. ^ Dieulefait, Luis (2007), "The level 1 weight 2 case of Serre's conjecture", Revista Matemática Iberoamericana, 23 (3): 1115–1124, arXiv:math/0412099, doi:10.4171/rmi/525.
  5. ^ Khare, Chandrashekhar (2006), "Serre's modularity conjecture: The level one case", Duke Mathematical Journal, 134 (3): 557–589, doi:10.1215/S0012-7094-06-13434-8.
  6. ^ Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (I)", Inventiones Mathematicae, 178 (3): 485–504, Bibcode:2009InMat.178..485K, CiteSeerX 10.1.1.518.4611, doi:10.1007/s00222-009-0205-7 and Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (II)", Inventiones Mathematicae, 178 (3): 505–586, Bibcode:2009InMat.178..505K, CiteSeerX 10.1.1.228.8022, doi:10.1007/s00222-009-0206-6.

References

See also

External links

This page was last edited on 7 March 2024, at 09:27
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.