To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Serre's conjecture II (algebra)

From Wikipedia, the free encyclopedia

In mathematics, Jean-Pierre Serre conjectured[1][2] the following statement regarding the Galois cohomology of a simply connected semisimple algebraic group. Namely, he conjectured that if G is such a group over a perfect field F of cohomological dimension at most 2, then the Galois cohomology set H1(FG) is zero.

A converse of the conjecture holds: if the field F is perfect and if the cohomology set H1(FG) is zero for every semisimple simply connected algebraic group G then the p-cohomological dimension of F is at most 2 for every prime p.[3]

The conjecture holds in the case where F is a local field (such as p-adic field) or a global field with no real embeddings (such as Q(−1)). This is a special case of the Kneser–Harder–Chernousov Hasse principle for algebraic groups over global fields. (Note that such fields do indeed have cohomological dimension at most 2.[2]) The conjecture also holds when F is finitely generated over the complex numbers and has transcendence degree at most 2.[4]

The conjecture is also known to hold for certain groups G. For special linear groups, it is a consequence of the Merkurjev–Suslin theorem.[5] Building on this result, the conjecture holds if G is a classical group.[6] The conjecture also holds if G is one of certain kinds of exceptional group.[7]

YouTube Encyclopedic

  • 1/3
    Views:
    7 527
    2 795
    2 584
  • The Weil Conjectures, from Abel to Deligne - Sophie Morel
  • Serre's Conjectures - Benedict Gross
  • On integral aspects of the Tate conjecture - Alena Pirutka

Transcription

References

  1. ^ Serre, J-P. (1962). "Cohomologie galoisienne des groupes algébriques linéaires". Colloque sur la théorie des groupes algébriques: 53–68.
  2. ^ a b Serre, J-P. (1964). Cohomologie galoisienne. Lecture Notes in Mathematics. Vol. 5. Springer.
  3. ^ Serre, Jean-Pierre (1995). "Cohomologie galoisienne : progrès et problèmes". Astérisque. 227: 229–247. MR 1321649. Zbl 0837.12003 – via NUMDAM.
  4. ^ de Jong, A.J.; He, Xuhua; Starr, Jason Michael (2008). "Families of rationally simply connected varieties over surfaces and torsors for semisimple groups". arXiv:0809.5224 [math.AG].
  5. ^ Merkurjev, A.S.; Suslin, A.A. (1983). "K-cohomology of Severi-Brauer varieties and the norm-residue homomorphism". Math. USSR Izvestiya. 21 (2): 307–340. Bibcode:1983IzMat..21..307M. doi:10.1070/im1983v021n02abeh001793.
  6. ^ Bayer-Fluckiger, E.; Parimala, R. (1995). "Galois cohomology of the classical groups over fields of cohomological dimension ≤ 2". Inventiones Mathematicae. 122: 195–229. Bibcode:1995InMat.122..195B. doi:10.1007/BF01231443. S2CID 124673233.
  7. ^ Gille, P. (2001). "Cohomologie galoisienne des groupes algebriques quasi-déployés sur des corps de dimension cohomologique ≤ 2". Compositio Mathematica. 125 (3): 283–325. doi:10.1023/A:1002473132282. S2CID 124765999.

External links

This page was last edited on 21 April 2022, at 14:46
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.