To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Segre embedding

From Wikipedia, the free encyclopedia

In mathematics, the Segre embedding is used in projective geometry to consider the cartesian product (of sets) of two projective spaces as a projective variety. It is named after Corrado Segre.

YouTube Encyclopedic

  • 1/5
    Views:
    889
    1 867
    3 633
    6 024
    2 826
  • 10.3 Projective varieties and the Segre embedding (Commutative Algebra and Algebraic Geometry)
  • algebraic geometry 28 Products of projective varieties
  • algebraic geometry 18 Products of varieties
  • algebraic geometry 17 Affine and projective varieties
  • Computing Sheaf Cohomology for Products of Projective Spaces

Transcription

Definition

The Segre map may be defined as the map

taking a pair of points to their product

(the XiYj are taken in lexicographical order).

Here, and are projective vector spaces over some arbitrary field, and the notation

is that of homogeneous coordinates on the space. The image of the map is a variety, called a Segre variety. It is sometimes written as .

Discussion

In the language of linear algebra, for given vector spaces U and V over the same field K, there is a natural way to map their cartesian product to their tensor product.

In general, this need not be injective because, for , and any nonzero ,

Considering the underlying projective spaces P(U) and P(V), this mapping becomes a morphism of varieties

This is not only injective in the set-theoretic sense: it is a closed immersion in the sense of algebraic geometry. That is, one can give a set of equations for the image. Except for notational trouble, it is easy to say what such equations are: they express two ways of factoring products of coordinates from the tensor product, obtained in two different ways as something from U times something from V.

This mapping or morphism σ is the Segre embedding. Counting dimensions, it shows how the product of projective spaces of dimensions m and n embeds in dimension

Classical terminology calls the coordinates on the product multihomogeneous, and the product generalised to k factors k-way projective space.

Properties

The Segre variety is an example of a determinantal variety; it is the zero locus of the 2×2 minors of the matrix . That is, the Segre variety is the common zero locus of the quadratic polynomials

Here, is understood to be the natural coordinate on the image of the Segre map.

The Segre variety is the categorical product of and .[1] The projection

to the first factor can be specified by m+1 maps on open subsets covering the Segre variety, which agree on intersections of the subsets. For fixed , the map is given by sending to . The equations ensure that these maps agree with each other, because if we have .

The fibers of the product are linear subspaces. That is, let

be the projection to the first factor; and likewise for the second factor. Then the image of the map

for a fixed point p is a linear subspace of the codomain.

Examples

Quadric

For example with m = n = 1 we get an embedding of the product of the projective line with itself in P3. The image is a quadric, and is easily seen to contain two one-parameter families of lines. Over the complex numbers this is a quite general non-singular quadric. Letting

be the homogeneous coordinates on P3, this quadric is given as the zero locus of the quadratic polynomial given by the determinant

Segre threefold

The map

is known as the Segre threefold. It is an example of a rational normal scroll. The intersection of the Segre threefold and a three-plane is a twisted cubic curve.

Veronese variety

The image of the diagonal under the Segre map is the Veronese variety of degree two

Applications

Because the Segre map is to the categorical product of projective spaces, it is a natural mapping for describing non-entangled states in quantum mechanics and quantum information theory. More precisely, the Segre map describes how to take products of projective Hilbert spaces.[2]

In algebraic statistics, Segre varieties correspond to independence models.

The Segre embedding of P2×P2 in P8 is the only Severi variety of dimension 4.

References

  1. ^ McKernan, James (2010). "Algebraic Geometry Course, Lecture 6: Products and fibre products" (PDF). online course material. Retrieved 11 April 2014.
  2. ^ Gharahi, Masoud; Mancini, Stefano; Ottaviani, Giorgio (2020-10-01). "Fine-structure classification of multiqubit entanglement by algebraic geometry". Physical Review Research. 2 (4): 043003. doi:10.1103/PhysRevResearch.2.043003. hdl:2158/1210686.
This page was last edited on 4 January 2024, at 05:02
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.