To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Rectified tesseract

From Wikipedia, the free encyclopedia

Rectified tesseract

Schlegel diagram
Centered on cuboctahedron
tetrahedral cells shown
Type Uniform 4-polytope
Schläfli symbol r{4,3,3} =
2r{3,31,1}
h3{4,3,3}
Coxeter-Dynkin diagrams

=
Cells 24 8 (3.4.3.4)

16 (3.3.3)
Faces 88 64 {3}
24 {4}
Edges 96
Vertices 32
Vertex figure

(Elongated equilateral-triangular prism)
Symmetry group B4 [3,3,4], order 384
D4 [31,1,1], order 192
Properties convex, edge-transitive
Uniform index 10 11 12
Net

In geometry, the rectified tesseract, rectified 8-cell is a uniform 4-polytope (4-dimensional polytope) bounded by 24 cells: 8 cuboctahedra, and 16 tetrahedra. It has half the vertices of a runcinated tesseract, with its construction, called a runcic tesseract.

It has two uniform constructions, as a rectified 8-cell r{4,3,3} and a cantellated demitesseract, rr{3,31,1}, the second alternating with two types of tetrahedral cells.

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as tC8.

YouTube Encyclopedic

  • 1/5
    Views:
    14 648
    937
    461
    8 368
    7 424
  • Rectified Tesseract
  • Rectified Tesseract
  • Rectified octachoron
  • Round Klein Bottle (Large)
  • Real Tesseract - Fourth Dimention

Transcription

Construction

The rectified tesseract may be constructed from the tesseract by truncating its vertices at the midpoints of its edges.

The Cartesian coordinates of the vertices of the rectified tesseract with edge length 2 is given by all permutations of:

Images

orthographic projections
Coxeter plane B4 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane F4 A3
Graph
Dihedral symmetry [12/3] [4]

Wireframe

16 tetrahedral cells

Projections

In the cuboctahedron-first parallel projection of the rectified tesseract into 3-dimensional space, the image has the following layout:

  • The projection envelope is a cube.
  • A cuboctahedron is inscribed in this cube, with its vertices lying at the midpoint of the cube's edges. The cuboctahedron is the image of two of the cuboctahedral cells.
  • The remaining 6 cuboctahedral cells are projected to the square faces of the cube.
  • The 8 tetrahedral volumes lying at the triangular faces of the central cuboctahedron are the images of the 16 tetrahedral cells, two cells to each image.

Alternative names

  • Rit (Jonathan Bowers: for rectified tesseract)
  • Ambotesseract (Neil Sloane & John Horton Conway)
  • Rectified tesseract/Runcic tesseract (Norman W. Johnson)
    • Runcic 4-hypercube/8-cell/octachoron/4-measure polytope/4-regular orthotope
    • Rectified 4-hypercube/8-cell/octachoron/4-measure polytope/4-regular orthotope

Related uniform polytopes

Runcic cubic polytopes

Runcic n-cubes
n 4 5 6 7 8
[1+,4,3n-2]
= [3,3n-3,1]
[1+,4,32]
= [3,31,1]
[1+,4,33]
= [3,32,1]
[1+,4,34]
= [3,33,1]
[1+,4,35]
= [3,34,1]
[1+,4,36]
= [3,35,1]
Runcic
figure
Coxeter
=

=

=

=

=
Schläfli h3{4,32} h3{4,33} h3{4,34} h3{4,35} h3{4,36}

Tesseract polytopes

B4 symmetry polytopes
Name tesseract rectified
tesseract
truncated
tesseract
cantellated
tesseract
runcinated
tesseract
bitruncated
tesseract
cantitruncated
tesseract
runcitruncated
tesseract
omnitruncated
tesseract
Coxeter
diagram

=

=
Schläfli
symbol
{4,3,3} t1{4,3,3}
r{4,3,3}
t0,1{4,3,3}
t{4,3,3}
t0,2{4,3,3}
rr{4,3,3}
t0,3{4,3,3} t1,2{4,3,3}
2t{4,3,3}
t0,1,2{4,3,3}
tr{4,3,3}
t0,1,3{4,3,3} t0,1,2,3{4,3,3}
Schlegel
diagram
B4
 
Name 16-cell rectified
16-cell
truncated
16-cell
cantellated
16-cell
runcinated
16-cell
bitruncated
16-cell
cantitruncated
16-cell
runcitruncated
16-cell
omnitruncated
16-cell
Coxeter
diagram

=

=

=

=

=

=
Schläfli
symbol
{3,3,4} t1{3,3,4}
r{3,3,4}
t0,1{3,3,4}
t{3,3,4}
t0,2{3,3,4}
rr{3,3,4}
t0,3{3,3,4} t1,2{3,3,4}
2t{3,3,4}
t0,1,2{3,3,4}
tr{3,3,4}
t0,1,3{3,3,4} t0,1,2,3{3,3,4}
Schlegel
diagram
B4

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • 2. Convex uniform polychora based on the tesseract (8-cell) and hexadecachoron (16-cell) - Model 11, George Olshevsky.
  • Klitzing, Richard. "4D uniform polytopes (polychora) o4x3o3o - rit".
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
This page was last edited on 2 March 2020, at 09:06
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.