To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

From Wikipedia, the free encyclopedia

Ribbon theory is a strand of mathematics within topology that has seen particular application as regards DNA.[1]


  • Link is the integer number of turns of the ribbon around its axis;
  • Twist is the rate of rotation of the ribbon around its axis;
  • Writhe is a measure of non-planarity of the ribbon's axis curve.

Work by Călugăreanu, White and Brock Fuller led to the Călugăreanu–White–Fuller theorem that Link = Writhe + Twist.[2]

See also


  • Adams, Colin (2004), The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, American Mathematical Society, ISBN 0-8218-3678-1
  • Călugăreanu, G. 1959 'L’intégral de Gauss et l’analyse des nœuds tridimensionnels', Rev. Math. Pures Appl. 4, 5–20.
  • Călugăreanu, G. 1961 'Sur les classes d’isotopie des noeuds tridimensionels et leurs invariants', Czech. Math. J. 11, 588–625.
  • Fuller F. B. 1971 'The writhing number of a space curve', Proc Natl Acad Sci U S A. Apr;68(4):815–9.
  • White, J. H. 1969 'Self-linking and the Gauss integral in higher dimensions', Am. J. Math. 91, 693–728
  1. ^ Topology and physics of circular DNA by Aleksandr Vadimovich Vologodskiǐ, CRC Press Inc, 1992, p49
  2. ^ The geometry of twisted ribbons, Mark Dennis Homepage, University of Bristol, Accessed 18 July 2010, Inaccessible 27 February 2018
This page was last edited on 27 February 2018, at 15:38
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.