To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Resatorvid
Clinical data
Trade namesResatorvid
Identifiers
  • ethyl (6R)-6-[(2-chloro-4-fluorophenyl)sulfamoyl]cyclohexene-1-carboxylate
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
FormulaC15H17ClFNO4S
Molar mass361.81 g·mol−1
3D model (JSmol)
  • CCOC(=O)C1=CCCC[C@H]1S(=O)(=O)NC2=C(C=C(C=C2)F)Cl
  • InChI=1S/C15H17ClFNO4S/c1-2-22-15(19)11-5-3-4-6-14(11)23(20,21)18-13-8-7-10(17)9-12(13)16/h5,7-9,14,18H,2-4,6H2,1H3/t14-/m1/s1
  • Key:LEEIJTHMHDMWLJ-CQSZACIVSA-N

Resatorvid (TAK-242) is a cyclohexane derivative that was invented by scientists at Takeda in a drug discovery campaign to identify inhibitors of the receptor TLR4.[1] It binds directly to cysteine residue 747[1] intracellularly, preventing TLR4 binding with TIRAP and thus preventing downstream signal transduction.[2]

A randomized, double-blinded Phase III trial of resatorvid in sepsis was halted early due to lack of efficacy, and the compound has become a widely used tool compound in biological research.[1]

It has antiinflammatory and neuroprotective effects in preclinical models.[3] It has been explored in preclinical studies of several forms of cancer, including multiple myeloma, breast cancer, and ovarian cancer,[4] and has been suggested for study in skin cancers.[5]

Efforts have been made to improve resatorvid by making prodrugs and deuterated derivatives.[3]

See also

References

  1. ^ a b c Wang X, Smith C, Yin H (June 2013). "Targeting Toll-like receptors with small molecule agents". Chemical Society Reviews. 42 (12): 4859–4866. doi:10.1039/c3cs60039d. PMC 3665707. PMID 23503527.
  2. ^ Karimy JK, Reeves BC, Kahle KT (June 2020). "Targeting TLR4-dependent inflammation in post-hemorrhagic brain injury". Expert Opinion on Therapeutic Targets. 24 (6): 525–533. doi:10.1080/14728222.2020.1752182. PMC 8104018. PMID 32249624.
  3. ^ a b Miller S, Blanco MJ (June 2021). "Small molecule therapeutics for neuroinflammation-mediated neurodegenerative disorders". RSC Medicinal Chemistry. 12 (6): 871–886. doi:10.1039/d1md00036e. PMC 8221257. PMID 34223157.
  4. ^ Innao V, Rizzo V, Allegra AG, Musolino C, Allegra A (February 2021). "Promising Anti-Mitochondrial Agents for Overcoming Acquired Drug Resistance in Multiple Myeloma". Cells. 10 (2): 439. doi:10.3390/cells10020439. PMC 7922387. PMID 33669515.
  5. ^ Dickinson SE, Wondrak GT (2018). "TLR4-directed Molecular Strategies Targeting Skin Photodamage and Carcinogenesis". Current Medicinal Chemistry. 25 (40): 5487–5502. doi:10.2174/0929867324666170828125328. PMID 28847267. S2CID 670318.

Further reading

This page was last edited on 30 April 2024, at 20:34
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.