To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Radical of a Lie algebra

From Wikipedia, the free encyclopedia

In the mathematical field of Lie theory, the radical of a Lie algebra is the largest solvable ideal of [1]

The radical, denoted by , fits into the exact sequence

.

where is semisimple. When the ground field has characteristic zero and has finite dimension, Levi's theorem states that this exact sequence splits; i.e., there exists a (necessarily semisimple) subalgebra of that is isomorphic to the semisimple quotient via the restriction of the quotient map

A similar notion is a Borel subalgebra, which is a (not necessarily unique) maximal solvable subalgebra.

YouTube Encyclopedic

  • 1/3
    Views:
    1 008
    337
    12 119
  • Lie Algebra: Solvable and Semisimple (part 1)
  • Solvable Group implies Solvable in Radical
  • 302.4B: Solvable Groups

Transcription

Definition

Let be a field and let be a finite-dimensional Lie algebra over . There exists a unique maximal solvable ideal, called the radical, for the following reason.

Firstly let and be two solvable ideals of . Then is again an ideal of , and it is solvable because it is an extension of by . Now consider the sum of all the solvable ideals of . It is nonempty since is a solvable ideal, and it is a solvable ideal by the sum property just derived. Clearly it is the unique maximal solvable ideal.

Related concepts

  • A Lie algebra is semisimple if and only if its radical is .
  • A Lie algebra is reductive if and only if its radical equals its center.

See also

References

  1. ^ Hazewinkel, Michiel; Gubareni, Nadiya; Kirichenko, V. V. (2010), Algebras, Rings and Modules: Lie Algebras and Hopf Algebras, Mathematical Surveys and Monographs, vol. 168, Providence, RI: American Mathematical Society, p. 15, doi:10.1090/surv/168, ISBN 978-0-8218-5262-0, MR 2724822.
This page was last edited on 28 September 2022, at 14:22
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.