To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Suitably-aligned f atomic orbitals can overlap to form a φ molecular orbital (a φ bond)

In chemistry, phi bonds (φ bonds) are covalent chemical bonds, where six lobes of one involved atomic orbital overlap six lobes of the other involved atomic orbital. This overlap leads to the formation of a bonding molecular orbital with three nodal planes which contain the internuclear axis and go through both atoms.

The Greek letter φ in their name refers to f orbitals, since the orbital symmetry of the φ bond is the same as that of the usual (6-lobed) type of f orbital when seen down the bond axis.

There was one possible candidate known in 2005 of a molecule with phi bonding (a U−U bond, in the molecule U<sub>2</sub>).[1] However, later studies that accounted for spin orbit interactions found that the bonding was only of fourth order.[2][3][4] Experimental evidence for phi bonding between a thorium atom and cyclooctatetraene in thorocene has been supported by computational analysis, though this mixed-orbital bond has strong ionic character and is not a traditional covalent phi bond.[5]

YouTube Encyclopedic

  • 1/3
    Views:
    436 962
    203 529
    91 376
  • Sigma and Pi Bonds Explained, Basic Introduction, Chemistry
  • Sigma and Pi bonds
  • Torsional angle (dihedral angle)

Transcription

References

  1. ^ Gagliardi, Laura; Roos, Björn O. (2005). "Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond". Nature. 433 (7028): 848–851. Bibcode:2005Natur.433..848G. doi:10.1038/nature03249. PMID 15729337. S2CID 421380.
  2. ^ T. A. Manz (2017). "Introducing DDEC6 atomic population analysis: part 3. Comprehensive method to compute bond orders". RSC Adv. 7 (72): 45552–45581. Bibcode:2017RSCAd...745552M. doi:10.1039/c7ra07400j.
  3. ^ "The diuranium molecule has a quadruple bond". chab.ethz.ch. Retrieved 2020-03-21.
  4. ^ Knecht, Stefan; Jensen, Hans Jørgen Aa; Saue, Trond (January 2019). "Relativistic quantum chemical calculations show that the uranium molecule U 2 has a quadruple bond". Nature Chemistry. 11 (1): 40–44. doi:10.1038/s41557-018-0158-9. ISSN 1755-4349. PMID 30374039. S2CID 53112083.
  5. ^ Minasian, Stefan G.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Clark, David L.; Kozimor, Stosh A.; Martin, Richard L.; Shuh, David K.; Tyliszczak, Tolek (2014). "New evidence for 5f covalency in actinocenes determined from carbon K-edge XAS and electronic structure theory". Chem. Sci. 5 (1): 351–359. doi:10.1039/C3SC52030G. ISSN 2041-6520.
This page was last edited on 11 May 2024, at 15:32
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.