To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

PKS 1148-001
PKS 1148-001 as observed by SDSS
Observation data (J2000.0 epoch)
ConstellationVirgo
Right ascension11h 50m 43.871s
Declination-00d 23m 54.20s
Redshift1.979562
Heliocentric radial velocity593,458 km/s
Distance10.221 Gly (light travel time distance)
Apparent magnitude (V)0.063
Apparent magnitude (B)0.084
Surface brightness17.1
Characteristics
TypeOpt var, RLQ
Other designations
UM 458, 4C -00.47, PGC 37034, QUEST 042860, MRC 1148-001, MG1 J115044-0024, OM -480, TXS 1148-001, 1RXS J115044.2-002349, CoNFIG 113

PKS 1148-001 also known as UM 458 and 4C -00.47, is a quasar located in the constellation of Virgo. Its redshift is 1.979, estimating the object to be located 10.2 billion light-years from Earth.[1]

Characteristics

PKS 1148-001 has an active galactic nucleus (AGN).[2] Categorized a blazar,[3][4] an active galaxy with an astrophysical jet, the temperature increases up to ~2x1011 K excessive of inverse Compton limit and correlating with larger excess of particle energy over magnetic energy.[5]

Moreover, PKS 1148-001 is also a radio-loud quasar.[6] It was perceived by researchers presenting sums on same type, from 15 GHz data from Very Long Baseline Array between August 31, 1994, and December 26, 2016. They found the jet in PKS 1148-001 has an proof of accelerated motion at the >3σ level. The jet has a Gaussian brightness temperature of 4.1( ± 0.6) × 1010 K, suggesting its jet cores are within equipartition between the particle and magnetic field energy in median state.[7] Having a slower speed patterns of 4 pc (100 pc deprojected) of its core feature, the unbeamed 15 GHz luminosity of the jet is found above ∼1024.5 W Hz−1. It has a space density of 261 ± 19 Gpc−3 with counter jet-features[8] indicating these values are compatible with FR II class radio galaxies.[9]

The host galaxy of PKS 1148-001 is a giant early-type galaxy.[10] Classified a starburst galaxy propelled by interstellar medium pressure balance,[11] it contains a massive molecular gas reservoir with dust masses of Md ∼several × 107 M⊙ and 12CO(2–1) line emission distributions, according to researchers who noticed the presence of molecular gas disks.[12] The host galaxy of PKS 1148-001 has a stellar disk found growing, indicating cold gas in interstellar medium plays a part and by inside-out growth in an isolated environment with an average correlation of Spearman's ρ = 0.30.[13] Moreover, the host galaxy has evidence of pulsar wind nebula features, likely caused by numerous supernovae.[14]

Further observations

PKS 1148-001 is known to have extensive polarization, according to researchers presenting polarization images of 9 other radio-loud quasars chosen from Palomar-Green (PG) 'blazar' sample. The core has several magnetic B-fields that transverses from one region to another, and jets displaying fields along the jet direction. The hotspots in PKS 1148–001, either shows transverse B-fields indicating signs of B-field compression with terminal shocks or by complicated structures. PKS 1148-001 has also hybrid FRI/FRII radio morphologies, indicating the powerful radio jets are caused by the reactivation of the active nucleus.[15][16]

The Green Bank Telescope also found H I 21 cm absorption in PKS 1148–001 as well. With a cosmological mass density, the neutral gas is ΩH I with mean spin temperature of Ts/f = 175 K. These are no traces of absorption lines suggested by researchers indicating there is a minimal evolution of ΩH I taking place over the last 11 billion years in agreement with other methods measuring ΩH I.[17]

PKS 1148-001 was also observed by researchers from Lick Observatory and Anglo-Australian Observatory. They found out the quasar has a dampened Lyα absorber with column densities measuring NHI>=2×1020 atoms cm−2 showing there is a link of neutral gas evolving along with its redshift.[18]

PKS 1148-001 is one of the radio-detected quasars with a redshift less than 2.0, according to the Hubble diagram. When V magnitudes are corrected by extinction correction equal to -3.3 times the delta (B-V) reddening, based on the bolometric extinction of 0.35 magnitude and through corrections applied in sharpening the envelope, PKS 1148-001 is the most luminous quasar.[19][20]

Broad absorption-line quasar

Amongst 3-10 percent of the moderate-to-high redshift quasars, PKS 1148-001 has a broad absorption-line feature. By looking at the absorption trough, the quasar contains multiple structures with an outflow velocity nearing 65,000 km/s, although an outflow velocity of 0-20,000 km/s is more stereotypical. The C IV emission in PKS 1148-001 has a small-scale peak intensity.[21]

Core polarization vector

The source of PKS 1148-001 is found vigorous with either more or less uniformly distributed with a relative orientation of the core polarization vector at λ6 cm between 0° and 90°, according to researchers who investigated the dependence of the angle of φ, between its polarization vector and the radio axis, with the fraction of emission emitted from the core, fc.[22]

Radio source

PKS 1148-001 contains a flat-spectrum radio source[23][24] with higher frequencies observed by Australia Telescope.[25] The source is also found to be dense and varying.[26][27] The three components have sizes of 0.0015, 0.01 and 0.1 arcsec and a synchrotron self-absorption found below the frequencies about 1.5, 0.4 and 0.05 GHz. This is in tune with the total flux density spectrum observed at wavelengths.[28][29]

The radio source is also of extragalactic origins.[30][31] When Japanese scientists investigated the source in 1979, it has a correlation coefficient of r=0.60 with RM scatter dependence found clarified by its uniform intergalactic magnetic field of 2.7 × 10−9 G running in the direction of l=100°, b=15° in space up to z=2.[32] According to researchers from ANRAO/Parkes, NRAO/Greenbank, and MPIfR/Bonn, the source is shining at 2.7 GHz.[33]

A deeper examination was conducted on the radio source. From the results, researchers noted the thermal electron density of the radio emission zone in PKS 1148–001, is found changing from 1 to 10−5cm−3 for such sources within the range 1 - 103pc. This is a magnitude smaller by several orders compared by the density of optical emission line regions. Also, the compact source is ≤108 when the ratio is calculated between density of relativistic and thermal electrons.[34]

Possible cluster member?

PKS 1148-001 is known to interact with dense intracluster media. Executed by the Very Large Array on more than 120 quasars on November 23, 1980, and April 23, 1981, the source in PKS 1148-001 is found either distorted or bended, which its distortions observed might not be caused via the external media interactions.[35]

Black hole

The supermassive black hole inside PKS 1148-001 is found to grow at ∼3× faster when black hole mass ratios in other present-day galaxies.[10] According to researchers, an X-ray has been found emitting from the black hole with power-law slope value of 1.39. This is consistent with an X-ray model that is jet-dominated, but partly caused by relativistic beaming effect.[36]

References

  1. ^ "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2024-06-12.
  2. ^ Anderson, Scott F.; Margon, Bruce; Voges, Wolfgang; Plotkin, Richard M.; Syphers, David; Haggard, Daryl; Collinge, Matthew J.; Meyer, Jillian; Strauss, Michael A.; Agüeros, Marcel A.; Hall, Patrick B.; Homer, L.; Ivezić, Željko; Richards, Gordon T.; Richmond, Michael W. (2007-01-01). "A Large, Uniform Sample of X-Ray-emitting Active Galactic Nuclei from the ROSAT All Sky and Sloan Digital Sky Surveys: The Data Release 5 Sample". The Astronomical Journal. 133 (1): 313–329. arXiv:astro-ph/0609458. Bibcode:2007AJ....133..313A. doi:10.1086/509765. ISSN 0004-6256.
  3. ^ Massaro, E.; Giommi, P.; Leto, C.; Marchegiani, P.; Maselli, A.; Perri, M.; Piranomonte, S.; Sclavi, S. (2009-02-01). "Roma-BZCAT: a multifrequency catalogue of blazars". Astronomy and Astrophysics. 495 (2): 691–696. arXiv:0810.2206. Bibcode:2009A&A...495..691M. doi:10.1051/0004-6361:200810161. ISSN 0004-6361.
  4. ^ Chand, Krishan; Gopal-Krishna (2022-10-01). "Persistence of the blazar state in flat-spectrum radio quasars". Monthly Notices of the Royal Astronomical Society. 516 (1): L18–L23. arXiv:2206.11938. Bibcode:2022MNRAS.516L..18C. doi:10.1093/mnrasl/slac066. ISSN 0035-8711.
  5. ^ Kellermann, K. I.; Kovalev, Y. Y.; Lister, M. L.; Homan, D. C.; Kadler, M.; Cohen, M. H.; Ros, E.; Zensus, J. A.; Vermeulen, R. C.; Aller, M. F.; Aller, H. D. (2007-10-10). "Doppler Boosting, Superluminal Motion, and the Kinematics of AGN Jets". Astrophysics and Space Science. 311 (1–3): 231–239. arXiv:0708.3219. Bibcode:2007Ap&SS.311..231K. doi:10.1007/s10509-007-9622-5. ISSN 0004-640X.
  6. ^ Lister, M. L.; Homan, D. C.; Kellermann, K. I.; Kovalev, Y. Y.; Pushkarev, A. B.; Ros, E.; Savolainen, T. (2021-12-01). "Monitoring Of Jets in Active Galactic Nuclei with VLBA Experiments. XVIII. Kinematics and Inner Jet Evolution of Bright Radio-loud Active Galaxies". The Astrophysical Journal. 923 (1): 30. arXiv:2108.13358. Bibcode:2021ApJ...923...30L. doi:10.3847/1538-4357/ac230f. ISSN 0004-637X.
  7. ^ Homan, D. C.; Cohen, M. H.; Hovatta, T.; Kellermann, K. I.; Kovalev, Y. Y.; Lister, M. L.; Popkov, A. V.; Pushkarev, A. B.; Ros, E.; Savolainen, T. (2021-12-01). "MOJAVE. XIX. Brightness Temperatures and Intrinsic Properties of Blazar Jets". The Astrophysical Journal. 923 (1): 67. arXiv:2109.04977. Bibcode:2021ApJ...923...67H. doi:10.3847/1538-4357/ac27af. ISSN 0004-637X.
  8. ^ Lister, M. L.; Homan, D. C.; Kellermann, K. I.; Kovalev, Y. Y.; Pushkarev, A. B.; Ros, E.; Savolainen, T. (2023-05-01). "Erratum: "Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. XVIII. Kinematics and Inner Jet Evolution of Bright Radio-loud Active Galaxies" (2021, ApJ, 923, 30)". The Astrophysical Journal. 949 (1): 34. Bibcode:2023ApJ...949...34L. doi:10.3847/1538-4357/accf0c. ISSN 0004-637X.
  9. ^ Lister, M. L.; Homan, D. C.; Hovatta, T.; Kellermann, K. I.; Kiehlmann, S.; Kovalev, Y. Y.; Max-Moerbeck, W.; Pushkarev, A. B.; Readhead, A. C. S.; Ros, E.; Savolainen, T. (2019-03-01). "MOJAVE. XVII. Jet Kinematics and Parent Population Properties of Relativistically Beamed Radio-loud Blazars". The Astrophysical Journal. 874 (1): 43. arXiv:1902.09591. Bibcode:2019ApJ...874...43L. doi:10.3847/1538-4357/ab08ee. ISSN 0004-637X.
  10. ^ a b Fu, Hai; Isbell, Jacob; Casey, Caitlin M.; Cooray, Asantha; Prochaska, J. Xavier; Scoville, Nick; Stockton, Alan (2017-08-01). "The Circumgalactic Medium of Submillimeter Galaxies. II. Unobscured QSOs within Dusty Starbursts and QSO Sightlines with Impact Parameters below 100 kpc". The Astrophysical Journal. 844 (2): 123. arXiv:1705.08908. Bibcode:2017ApJ...844..123F. doi:10.3847/1538-4357/aa7c63. ISSN 0004-637X.
  11. ^ Molina, Juan; Ibar, Edo; Godoy, Nicolás; Escala, Andrés; Michiyama, Tomonari; Cheng, Cheng; Hughes, Thomas M.; Baes, Maarten; Xue, Yongquan; Michałowski, Michał J.; van der Werf, Paul; Jiang, Xue-Jian (2020-11-01). "VALES. VII. Molecular and ionized gas properties in the pressure balanced interstellar medium of starburst galaxies at z ∼ 0.15". Astronomy and Astrophysics. 643: A78. arXiv:2009.08446. Bibcode:2020A&A...643A..78M. doi:10.1051/0004-6361/202039008. ISSN 0004-6361.
  12. ^ Sansom, A. E.; Glass, D. H. W.; Bendo, G. J.; Davis, T. A.; Rowlands, K.; Bourne, N.; Dunne, L.; Eales, S.; Kaviraj, S.; Popescu, C.; Smith, M.; Viaene, S. (2019-02-01). "ALMA observations of massive molecular gas reservoirs in dusty early-type galaxies". Monthly Notices of the Royal Astronomical Society. 482 (4): 4617–4629. arXiv:1811.02967. Bibcode:2019MNRAS.482.4617S. doi:10.1093/mnras/sty3021. ISSN 0035-8711.
  13. ^ Padave, Mansi; Borthakur, Sanchayeeta; Gim, Hansung B.; Thilker, David; Jansen, Rolf A.; Monkiewicz, Jacqueline; Kennicutt, Robert C.; Kauffmann, Guinevere; Fox, Andrew J.; Momjian, Emmanuel; Heckman, Timothy (2024-01-01). "DIISC-III. Signatures of Stellar Disk Growth in Nearby Galaxies". The Astrophysical Journal. 960 (1): 24. arXiv:2310.08482. Bibcode:2024ApJ...960...24P. doi:10.3847/1538-4357/ad029b. ISSN 0004-637X.
  14. ^ Dong, Dillon Z.; Hallinan, Gregg (2023-05-01). "A Flat-spectrum Radio Transient at 122 Mpc Consistent with an Emerging Pulsar Wind Nebula". The Astrophysical Journal. 948 (2): 119. arXiv:2206.11911. Bibcode:2023ApJ...948..119D. doi:10.3847/1538-4357/acc06c. ISSN 0004-637X.
  15. ^ Baghel, Janhavi; Kharb, P.; Silpa; Ho, Luis C.; Harrison, C. M. (2023-02-01). "A polarimetric study of nine PG quasars with the VLA". Monthly Notices of the Royal Astronomical Society. 519 (2): 2773–2795. arXiv:2212.07061. Bibcode:2023MNRAS.519.2773B. doi:10.1093/mnras/stac3691. ISSN 0035-8711.
  16. ^ Nandi, S.; Saikia, D. J.; Roy, R.; Dabhade, P.; Wadadekar, Y.; Larsson, J.; Baes, M.; Chandola, H. C.; Singh, M. (2019-07-01). "A low-frequency study of recently identified double-double radio galaxies". Monthly Notices of the Royal Astronomical Society. 486 (4): 5158–5170. arXiv:1905.00677. Bibcode:2019MNRAS.486.5158N. doi:10.1093/mnras/stz1184. ISSN 0035-8711.
  17. ^ Grasha, Kathryn; Darling, Jeremy; Leroy, Adam K.; Bolatto, Alberto D. (2020-10-01). "The evolution of neutral hydrogen over the past 11 Gyr via H I 21 cm absorption". Monthly Notices of the Royal Astronomical Society. 498 (1): 883–898. arXiv:2008.07578. Bibcode:2020MNRAS.498..883G. doi:10.1093/mnras/staa2521. ISSN 0035-8711.
  18. ^ Storrie-Lombardi, Lisa J.; Wolfe, Arthur M. (2000-11-01). "Surveys for z>3 Damped Lyα Absorption Systems: The Evolution of Neutral Gas". The Astrophysical Journal. 543 (2): 552–576. arXiv:astro-ph/0006044. Bibcode:2000ApJ...543..552S. doi:10.1086/317138. ISSN 0004-637X.
  19. ^ Teerikorpi, P. (1981-05-01). "On the Hubble diagram for quasars as a corrected for galactic absorption: evidence for a separate class of the most luminous quasars". Astronomy and Astrophysics. 98: 309–315. Bibcode:1981A&A....98..309T. ISSN 0004-6361.
  20. ^ Pica, A. J.; Smith, A. G. (1983-09-01). "Optical variability, absolute luminosity, and the Hubble diagram for QSOs". The Astrophysical Journal. 272: 11–25. Bibcode:1983ApJ...272...11P. doi:10.1086/161257. ISSN 0004-637X.
  21. ^ Turnshek, D. A. (1984-05-01). "Properties of the broad absorption-line QSOs". The Astrophysical Journal. 280: 51–65. Bibcode:1984ApJ...280...51T. doi:10.1086/161967. ISSN 0004-637X.
  22. ^ Saikia, D. J.; Shastri, P. (1984-11-01). "Relative orientation of core polarization at lambda 6 CM and the overall radio axes of quasars". Monthly Notices of the Royal Astronomical Society. 211: 47–56. Bibcode:1984MNRAS.211...47S. doi:10.1093/mnras/211.1.47. ISSN 0035-8711.
  23. ^ Healey, Stephen E.; Romani, Roger W.; Taylor, Gregory B.; Sadler, Elaine M.; Ricci, Roberto; Murphy, Tara; Ulvestad, James S.; Winn, Joshua N. (2007-07-01). "CRATES: An All-Sky Survey of Flat-Spectrum Radio Sources". The Astrophysical Journal Supplement Series. 171 (1): 61–71. arXiv:astro-ph/0702346. Bibcode:2007ApJS..171...61H. doi:10.1086/513742. ISSN 0067-0049.
  24. ^ Venugopal, V. R.; Swarup, G. (1979-12-01). "Structure of radio source PKS 1148-00". Bulletin of the Astronomical Society of India. 7: 116. Bibcode:1979BASI....7..116V. ISSN 0304-9523.
  25. ^ Mahony, Elizabeth K.; Sadler, Elaine M.; Croom, Scott M.; Ekers, Ronald D.; Bannister, Keith W.; Chhetri, Rajan; Hancock, Paul J.; Johnston, Helen M.; Massardi, Marcella; Murphy, Tara (2011-11-01). "Optical properties of high-frequency radio sources from the Australia Telescope 20 GHz (AT20G) Survey". Monthly Notices of the Royal Astronomical Society. 417 (4): 2651–2675. arXiv:1107.2454. Bibcode:2011MNRAS.417.2651M. doi:10.1111/j.1365-2966.2011.19427.x. ISSN 0035-8711.
  26. ^ Kellermann, K. I.; Pauliny-Toth, I. I. K. (1968-01-01). "Variable Radio Sources". Annual Review of Astronomy and Astrophysics. 6: 417–448. Bibcode:1968ARA&A...6..417K. doi:10.1146/annurev.aa.06.090168.002221. ISSN 0066-4146.
  27. ^ Pica, A. J.; Pollock, J. T.; Smith, A. G.; Leacock, R. J.; Edwards, P. L.; Scott, R. L. (1980-11-01). "Long-term optical behaviour of 114 extragalactic sources". The Astronomical Journal. 85: 1442–1461. Bibcode:1980AJ.....85.1442P. doi:10.1086/112820. ISSN 0004-6256.
  28. ^ Venugopal, V. R.; Ananthakrishnan, S.; Swarup, G.; Pynzar, A. V.; Udaltsov, V. A. (1985-08-01). "Structure of PKS 1148-001". Monthly Notices of the Royal Astronomical Society. 215 (4): 685–689. Bibcode:1985MNRAS.215..685V. doi:10.1093/mnras/215.4.685. ISSN 0035-8711.
  29. ^ Kellermann, K. I.; Pauliny-Toth, I. I. K.; Tyler, W. C. (1968-06-01). "Measurements of the flux density of discrete radio sources at centimeter wawelengths. I. Observations at 2695 MHz. (11.3cm)". The Astronomical Journal. 73: 298–309. Bibcode:1968AJ.....73..298K. doi:10.1086/110632. ISSN 0004-6256.
  30. ^ Morabito, D. D.; Niell, A. E.; Preston, R. A.; Linfield, R. P.; Wehrle, A. E.; Faulkner, J. (1986-05-01). "VLBI observations of 416 extragalactic radio sources". The Astronomical Journal. 91: 1038–1050. Bibcode:1986AJ.....91.1038M. doi:10.1086/114080. ISSN 0004-6256.
  31. ^ Walter, H. G.; West, R. M. (1986-02-01). "Optical Astrometry of Extragalactic Radio Sources". Astronomy and Astrophysics. 156: 1–7. Bibcode:1986A&A...156....1W. ISSN 0004-6361.
  32. ^ Sofue, Y.; Fujimoto, M.; Kawabata, K. (1979-01-01). "Intergalactic magnetic fields and Faraday rotation of extragalactic radio sources". Publications of the Astronomical Society of Japan. 31: 125–142. Bibcode:1979PASJ...31..125S. ISSN 0004-6264.
  33. ^ Wall, J. V.; Peacock, J. A. (1985-09-01). "Bright extragalactic radio sources at 2.7 GHz- III. The all-sky catalogue". Monthly Notices of the Royal Astronomical Society. 216 (2): 173–192. Bibcode:1985MNRAS.216..173W. doi:10.1093/mnras/216.2.173. ISSN 0035-8711.
  34. ^ Carvalho, J. C. (1985-09-01). "Magneto-ionic content of compact extragalactic radio sources". Astronomy and Astrophysics. 150: 129–132. Bibcode:1985A&A...150..129C. ISSN 0004-6361.
  35. ^ Hintzen, P.; Ulvestad, J.; Owen, F. (1983-06-01). "Are wide-angle radio-tail QSOs members of clusters of galaxies ? I. VLA maps at 20 CM of 117 radio quasars". The Astronomical Journal. 88: 709–758. Bibcode:1983AJ.....88..709H. doi:10.1086/113363. ISSN 0004-6256.
  36. ^ Wang, Ran; Wu, Xue-Bing; Kong, Min-Zhi (2006-07-01). "The Black Hole Fundamental Plane from a Uniform Sample of Radio and X-Ray-emitting Broad-Line AGNs". The Astrophysical Journal. 645 (2): 890–899. arXiv:astro-ph/0603514. Bibcode:2006ApJ...645..890W. doi:10.1086/504401. ISSN 0004-637X.
This page was last edited on 27 June 2024, at 09:58
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.