To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Open coloring axiom

From Wikipedia, the free encyclopedia

The open coloring axiom (abbreviated OCA) is an axiom about coloring edges of a graph whose vertices are a subset of the real numbers: two different versions were introduced by Abraham, Rubin & Shelah (1985) and by Todorčević (1989).

YouTube Encyclopedic

  • 1/3
    Views:
    114 578
    54 136
    298 664
  • How Infinity Explains the Finite | Infinite Series
  • Network Mathematics and Rival Factions | Infinite Series
  • Can you solve THE Klein Bottle Rubik's cube?

Transcription

Statement

Suppose that X is a subset of the reals, and each pair of elements of X is colored either black or white, with the set of white pairs being open in the complete graph on X. The open coloring axiom states that either:

  1. X has an uncountable subset such that any pair from this subset is white; or
  2. X can be partitioned into a countable number of subsets such that any pair from the same subset is black.

A weaker version, OCAP, replaces the uncountability condition in the first case with being a compact perfect set in X. Both OCA and OCAP can be stated equivalently for arbitrary separable spaces.

Relation to other axioms

OCAP can be proved in ZFC for analytic subsets of a Polish space, and from the axiom of determinacy. The full OCA is consistent with (but independent of) ZFC, and follows from the proper forcing axiom.

OCA implies that the smallest unbounded set of Baire space has cardinality . Moreover, assuming OCA, Baire space contains few "gaps" between sets of sequences — more specifically, that the only possible gaps are Hausdorff gaps and analogous (κ,ω)-gaps where κ is an initial ordinal not less than ω2.

References

  • Abraham, Uri; Rubin, Matatyahu; Shelah, Saharon (1985), "On the consistency of some partition theorems for continuous colorings, and the structure of ℵ1-dense real order types", Ann. Pure Appl. Logic, 29 (2): 123–206, doi:10.1016/0168-0072(84)90024-1, Zbl 0585.03019
  • Carotenuto, Gemma (2013), An introduction to OCA (PDF), notes on lectures by Matteo Viale
  • Kunen, Kenneth (2011), Set theory, Studies in Logic, vol. 34, London: College Publications, ISBN 978-1-84890-050-9, Zbl 1262.03001
  • Moore, Justin Tatch (2011), "Logic and foundations the proper forcing axiom", in Bhatia, Rajendra (ed.), Proceedings of the international congress of mathematicians (ICM 2010), Hyderabad, India, August 19–27, 2010. Vol. II: Invited lectures (PDF), Hackensack, NJ: World Scientific, pp. 3–29, ISBN 978-981-4324-30-4, Zbl 1258.03075
  • Todorčević, Stevo (1989), Partition problems in topology, Contemporary Mathematics, vol. 84, Providence, RI: American Mathematical Society, ISBN 0-8218-5091-1, MR 0980949, Zbl 0659.54001
This page was last edited on 18 August 2023, at 22:58
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.