To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Moore neighborhood

From Wikipedia, the free encyclopedia

The Moore neighborhood is composed of nine cells: a central cell and the eight cells which surround it.

In cellular automata, the Moore neighborhood is defined on a two-dimensional square lattice and is composed of a central cell and the eight cells that surround it.

YouTube Encyclopedic

  • 1/3
    Views:
    2 188 293
    20 221 014
    5 368
  • HELLO NEIGHBOR (Teens React: Gaming)
  • MY NEIGHBOR REALLY HATES CHIPMUNKS || Hello Neighbor ( Update Alpha Gameplay)
  • Neighborhood Game Club #13 - Sam Brown (Whitest Kids U Know)

Transcription

Name

The neighborhood is named after Edward F. Moore, a pioneer of cellular automata theory.

Importance

It is one of the two most commonly used neighborhood types, the other one being the von Neumann neighborhood, which excludes the corner cells. The well known Conway's Game of Life, for example, uses the Moore neighborhood. It is similar to the notion of 8-connected pixels in computer graphics.

The Moore neighbourhood of a cell is the cell itself and the cells at a Chebyshev distance of 1.

The concept can be extended to higher dimensions, for example forming a 26-cell cubic neighborhood for a cellular automaton in three dimensions, as used by 3D Life. In dimension d, where , the size of the neighborhood is 3d − 1.

In two dimensions, the number of cells in an extended Moore neighbourhood of range r is (2r + 1)2.

Algorithm

The idea behind the formulation of Moore neighborhood is to find the contour of a given graph. This idea was a great challenge for most analysts of the 18th century, and as a result an algorithm was derived from the Moore graph which was later called the Moore Neighborhood algorithm.

The pseudocode for the Moore-Neighbor tracing algorithm is

Input: A square tessellation, T, containing a connected component P of black cells.
Output: A sequence B (b1, b2, ..., bk) of boundary pixels i.e. the contour.
Define M(a) to be the Moore neighborhood of pixel a.
Let p denote the current boundary pixel.
Let c denote the current pixel under consideration i.e. c is in M(p).
Let b denote the backtrack of c (i.e. neighbor pixel of p that was previously tested)
 
Begin
  Set B to be empty.
  From bottom to top and left to right scan the cells of T until a black pixel, s, of P is found.
  Insert s in B.
  Set the current boundary point p to s i.e. p=s
  Let b = the pixel from which s was entered during the image scan.
  Set c to be the next clockwise pixel (from b) in M(p).
  While c not equal to s do
    If c is black
      insert c in B
      Let b = p
      Let p = c
      (backtrack: move the current pixel c to the pixel from which p was entered)
      Let c = next clockwise pixel (from b) in M(p).
    else
      (advance the current pixel c to the next clockwise pixel in M(p) and update backtrack)
      Let b = c
      Let c = next clockwise pixel (from b) in M(p).
    end If
  end While
End

Termination condition

The original termination condition was to stop after visiting the start pixel for the second time. This limits the set of contours the algorithm will walk completely. An improved stopping condition proposed by Jacob Eliosoff is to stop after entering the start pixel for the second time in the same direction you originally entered it.

See also

References

  • Weisstein, Eric W. "Moore Neighborhood". MathWorld.
  • Tyler, Tim, The Moore neighborhood at cell-auto.com
This page was last edited on 27 August 2023, at 04:57
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.