To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Seeds (cellular automaton)

From Wikipedia, the free encyclopedia

A typical chaotic "exploding" pattern in Seeds running for 140 generations.

Seeds is a cellular automaton in the same family as the Game of Life, initially investigated by Brian Silverman[1][2] and named by Mirek Wójtowicz.[1][3] It consists of an infinite two-dimensional grid of cells, each of which may be in one of two states: on or off. Each cell is considered to have eight neighbors (Moore neighborhood), as in Life. In each time step, a cell turns on or is "born" if it was off or "dead" but had exactly two neighbors that were on; all other cells turn off. Thus, in the notation describing the family of cellular automata containing Life, it is described by the rule B2/S.[1]

In Game of Life terminology, a pattern in which all cells that were on turn off at each step is called a phoenix. All patterns in Seeds have this form. Even though all live cells are constantly dying, the small birth requirement of two cells means that nearly every pattern in Seeds explodes into a chaotic mess that grows to cover the entire universe. Thus, in Wolfram's classification of cellular automata, it is a Class III automaton, in which nearly all patterns evolve chaotically.[1]

However, some patterns are known to behave in a more controlled fashion, repeating the same shape either in the same position of the grid (an oscillator) or translated some number of grid units after several steps (a spaceship). More complex rake and puffer patterns are known which move like spaceships leaving trails of oscillators or other spaceships behind them. Most of these patterns move at a speed of 1 cell per time step (the so-called speed of light, or c/1)[4] including three commonly seen spaceships with four on cells each, but slower-moving patterns are also known. A collection of patterns for the Seeds rule collected by Jason Summers includes patterns found by Stephen Wright, Mirek Wójtowicz, Noam Elkies, Mark Niemiec, Peter Naszvadi, and David Eppstein.[5]

YouTube Encyclopedic

  • 1/3
    Views:
    295 892
    614
    1 178
  • How Do Procedural Game Worlds Work In Video Games?
  • Cellular automata a: Deterministic cellular automata
  • PixelGarden: game of life

Transcription

See also

References

  1. ^ a b c d Martínez, Genaro J.; Seck-Tuoh-Mora, Juan C.; Zenil, Hector (2013), "Computation and Universality: Class IV versus Class III Cellular Automata", Journal of Cellular Automata, 7 (5–6): 393–430, arXiv:1304.1242, Bibcode:2013arXiv1304.1242M.
  2. ^ Brian Silverman (1996), "Changing the Rules", The Virtual Computer, Mathematical Association of America, archived from the original on July 2, 2013.
  3. ^ Mirek Wójtowicz, "Cellular Automaton Rules Lexicon — Family: Life", Mirek's Cellebration.
  4. ^ David Eppstein. "Known spaceships for the Seeds rule". Archived from the original on February 18, 2019.
  5. ^ Jason Summers' collection of Seeds patterns

External links

This page was last edited on 23 April 2021, at 11:45
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.