To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Modular invariant theory

From Wikipedia, the free encyclopedia

In mathematics, a modular invariant of a group is an invariant of a finite group acting on a vector space of positive characteristic (usually dividing the order of the group). The study of modular invariants was originated in about 1914 by Dickson (2004).

YouTube Encyclopedic

  • 1/3
    Views:
    3 366
    469
    1 010
  • Ulrich Bunke: Bordism, K-theory and eta invariants
  • (Mock) Modular forms and quantum invariants by Kazuhiro Hikami
  • Modular Forms and Geometry of Modular Varieties - Sankaran

Transcription

Dickson invariant

When G is the finite general linear group GLn(Fq) over the finite field Fq of order a prime power q acting on the ring Fq[X1, ...,Xn] in the natural way, Dickson (1911) found a complete set of invariants as follows. Write [e1, ..., en] for the determinant of the matrix whose entries are Xqej
i
, where e1, ..., en are non-negative integers. For example, the Moore determinant [0,1,2] of order 3 is

Then under the action of an element g of GLn(Fq) these determinants are all multiplied by det(g), so they are all invariants of SLn(Fq) and the ratios [e1, ...,en] / [0, 1, ..., n − 1] are invariants of GLn(Fq), called Dickson invariants. Dickson proved that the full ring of invariants Fq[X1, ...,Xn]GLn(Fq) is a polynomial algebra over the n Dickson invariants [0, 1, ..., i − 1, i + 1, ..., n] / [0, 1, ..., n − 1] for i = 0, 1, ..., n − 1. Steinberg (1987) gave a shorter proof of Dickson's theorem.

The matrices [e1, ..., en] are divisible by all non-zero linear forms in the variables Xi with coefficients in the finite field Fq. In particular the Moore determinant [0, 1, ..., n − 1] is a product of such linear forms, taken over 1 + q + q2 + ... + qn – 1 representatives of (n – 1)-dimensional projective space over the field. This factorization is similar to the factorization of the Vandermonde determinant into linear factors.

See also

References

This page was last edited on 7 December 2020, at 23:12
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.