To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Locally profinite group

From Wikipedia, the free encyclopedia

In mathematics, a locally profinite group is a Hausdorff topological group in which every neighborhood of the identity element contains a compact open subgroup. Equivalently, a locally profinite group is a topological group that is Hausdorff, locally compact, and totally disconnected. Moreover, a locally profinite group is compact if and only if it is profinite; this explains the terminology. Basic examples of locally profinite groups are discrete groups and the p-adic Lie groups. Non-examples are real Lie groups, which have the no small subgroup property.

In a locally profinite group, a closed subgroup is locally profinite, and every compact subgroup is contained in an open compact subgroup.

YouTube Encyclopedic

  • 1/5
    Views:
    12 167
    735
    778
    432
    389
  • Serre: Finite groups, Yesterday and Today
  • Vic Reiner, Lecture I - 9 February 2015
  • 3-Manifold Groups - Ian Agol
  • Finite Groups and Complexity Theory: from Leningrad to Saint Petersburg via Las Vegas | Лекториум
  • Constant-round interactive-proofs for delegating computations - Rothblum

Transcription

Examples

Important examples of locally profinite groups come from algebraic number theory. Let F be a non-archimedean local field. Then both F and are locally profinite. More generally, the matrix ring and the general linear group are locally profinite. Another example of a locally profinite group is the absolute Weil group of a non-archimedean local field: this is in contrast to the fact that the absolute Galois group of such is profinite (in particular compact).

Representations of a locally profinite group

Let G be a locally profinite group. Then a group homomorphism is continuous if and only if it has open kernel.

Let be a complex representation of G.[1] is said to be smooth if V is a union of where K runs over all open compact subgroups K. is said to be admissible if it is smooth and is finite-dimensional for any open compact subgroup K.

We now make a blanket assumption that is at most countable for all open compact subgroups K.

The dual space carries the action of G given by . In general, is not smooth. Thus, we set where is acting through and set . The smooth representation is then called the contragredient or smooth dual of .

The contravariant functor

from the category of smooth representations of G to itself is exact. Moreover, the following are equivalent.

  • is admissible.
  • is admissible.[2]
  • The canonical G-module map is an isomorphism.

When is admissible, is irreducible if and only if is irreducible.

The countability assumption at the beginning is really necessary, for there exists a locally profinite group that admits an irreducible smooth representation such that is not irreducible.

Hecke algebra of a locally profinite group

Let be a unimodular locally profinite group such that is at most countable for all open compact subgroups K, and a left Haar measure on . Let denote the space of locally constant functions on with compact support. With the multiplicative structure given by

becomes not necessarily unital associative -algebra. It is called the Hecke algebra of G and is denoted by . The algebra plays an important role in the study of smooth representations of locally profinite groups. Indeed, one has the following: given a smooth representation of G, we define a new action on V:

Thus, we have the functor from the category of smooth representations of to the category of non-degenerate -modules. Here, "non-degenerate" means . Then the fact is that the functor is an equivalence.[3]

Notes

  1. ^ We do not put a topology on V; so there is no topological condition on the representation.
  2. ^ Blondel, Corollary 2.8.
  3. ^ Blondel, Proposition 2.16.

References

  • Corinne Blondel, Basic representation theory of reductive p-adic groups
  • Bushnell, Colin J.; Henniart, Guy (2006), The local Langlands conjecture for GL(2), Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Berlin, New York: Springer-Verlag, doi:10.1007/3-540-31511-X, ISBN 978-3-540-31486-8, MR 2234120
  • Milne, James S. (1988), Canonical models of (mixed) Shimura varieties and automorphic vector bundles, MR 1044823
This page was last edited on 26 January 2024, at 18:49
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.