To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Lexicographic product of graphs

From Wikipedia, the free encyclopedia

The lexicographic product of graphs.

In graph theory, the lexicographic product or (graph) composition GH of graphs G and H is a graph such that

  • the vertex set of GH is the cartesian product V(G) × V(H); and
  • any two vertices (u,v) and (x,y) are adjacent in GH if and only if either u is adjacent to x in G or u = x and v is adjacent to y in H.

If the edge relations of the two graphs are order relations, then the edge relation of their lexicographic product is the corresponding lexicographic order.

The lexicographic product was first studied by Felix Hausdorff (1914). As Feigenbaum & Schäffer (1986) showed, the problem of recognizing whether a graph is a lexicographic product is equivalent in complexity to the graph isomorphism problem.

YouTube Encyclopedic

  • 1/3
    Views:
    1 517
    76 446
    34 726
  • Composition of Graphs
  • [Discrete Math 1] Partial Orders
  • Minimum Cost Path Dynamic Programming

Transcription

Properties

The lexicographic product is in general noncommutative: GHHG. However it satisfies a distributive law with respect to disjoint union: (A + B) ∙ C = AC + BC. In addition it satisfies an identity with respect to complementation: C(GH) = C(G) ∙ C(H). In particular, the lexicographic product of two self-complementary graphs is self-complementary.

The independence number of a lexicographic product may be easily calculated from that of its factors (Geller & Stahl 1975):

α(GH) = α(G)α(H).

The clique number of a lexicographic product is as well multiplicative:

ω(GH) = ω(G)ω(H).

The chromatic number of a lexicographic product is equal to the b-fold chromatic number of G, for b equal to the chromatic number of H:

χ(GH) = χb(G), where b = χ(H).

The lexicographic product of two graphs is a perfect graph if and only if both factors are perfect (Ravindra & Parthasarathy 1977).

References

  • Feigenbaum, J.; Schäffer, A. A. (1986), "Recognizing composite graphs is equivalent to testing graph isomorphism", SIAM Journal on Computing, 15 (2): 619–627, doi:10.1137/0215045, MR 0837609.
  • Geller, D.; Stahl, S. (1975), "The chromatic number and other functions of the lexicographic product", Journal of Combinatorial Theory, Series B, 19: 87–95, doi:10.1016/0095-8956(75)90076-3, MR 0392645.
  • Hausdorff, F. (1914), Grundzüge der Mengenlehre, Leipzig{{citation}}: CS1 maint: location missing publisher (link)
  • Imrich, Wilfried; Klavžar, Sandi (2000), Product Graphs: Structure and Recognition, Wiley, ISBN 0-471-37039-8
  • Ravindra, G.; Parthasarathy, K. R. (1977), "Perfect product graphs", Discrete Mathematics, 20 (2): 177–186, doi:10.1016/0012-365X(77)90056-5, hdl:10338.dmlcz/102469, MR 0491304.

External links

This page was last edited on 7 May 2024, at 07:48
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.