To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Lanthanum pentanickel

From Wikipedia, the free encyclopedia

Lanthanum pentanickel
Names
IUPAC name
lanthane nickel
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.032.144 Edit this at Wikidata
EC Number
  • 235-372-5
  • InChI=1S/La.5Ni
    Key: BUCVQDCWULHLJZ-UHFFFAOYSA-N
  • [Ni].[Ni].[Ni].[Ni].[Ni].[La]
Properties
LaNi5
Molar mass 432.3725 g·mol−1
Appearance Silvey-grey powder[1]
Density 7.950[1]
non-soluble[1]
Structure
hexagonal
P6/mmm
Hazards
GHS labelling:[2]
GHS02: Flammable
GHS07: Exclamation mark
GHS08: Health hazard
Danger
H228, H317, H350
P203, P210, P240, P241, P261, P272, P280, P302+P352, P318, P321, P333+P313, P362+P364, P370+P378, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

LaNi5 is a hexagonal intermetallic compound composed of rare earth element lanthanum and transition metal nickel. It presents a calcium pentacopper (CaCu5) crystal structure. It is a melting compound with the same composition and has hydrogen storage capacity.[3]

Structure

LaNi5 has a calcium pentacopper (CaCu5) type crystal structure, with a hexagonal lattice, space group is P6/mmm (No. 191), with lanthanum atom is located at coordinate origin 1a (0,0,0), two nickel atoms are located at 2c (1/ 3,2/3,0) and (2/3,1/3,0), the other three at 3g (1/2,0,1/2), (0,1/2,1/2), (1/2,1/2,1/2), with a=511pm, c=397pm. The unit cell contains 1 LaNi5 atom, the volume is 90×10−24 cm3, the LaNi5 unit cell contains a larger The six deformed tetrahedral voids can be used to fill in hydrogen atoms.[4]

Chemical reactions

As a hydrogen storage alloy, LaNi5 can absorb hydrogen to form the hydride LaNi5Hx (x≈6) when the pressure is slightly high and the temperature is low, or when the pressure decreases or the temperature increases, hydrogen can be released to form repeated absorption and release of hydrogen. But for the dehydrogenation process, because it is an endothermic reaction, in order to enable the reaction to proceed, the necessary energy must be added, otherwise the reaction will stop due to the decrease in temperature.[5]

Characteristics and applications

The hydrogen storage density per unit volume (crystal) of LaNi5H6.5 at 2 bar is equal to the density of gaseous molecular hydrogen at 1800 bar, and all hydrogen can be desorbed at 2 bar. Although the hydrogen storage density in practical applications is reduced due to the aggregation of some LaNi5 powders, it is still higher than the density of liquid hydrogen. This allows safe operation of hydrogen fuel.[5] In order to improve its hydrogen storage performance, metals such as lead or manganese are often used to partially replace nickel. Currently, LaNi5 is commonly used in storage and transportation of hydrogen, hydrogen vehicle power, fuel cells, separation and purification of hydrogen, propylene hydrogenation catalysts, etc.

References

  1. ^ a b c Elements, American. "Lanthanum Nickel Alloy". American Elements. Retrieved 2023-03-19.
  2. ^ "Lanthanum;nickel". pubchem.ncbi.nlm.nih.gov.
  3. ^ 李跃中主编 (September 2001). 无机化学 (in Chinese). 上海:上海交通大学出版社. p. 354. ISBN 7-313-02746-X.
  4. ^ "科学网—储氢材料LaNi5的晶体结构 - 桂耀荣的博文". blog.sciencenet.cn (in Chinese). Retrieved 2023-03-19.
  5. ^ a b "http://www.chem.pku.edu.cn/bianj/paper/07/18.pdf"翟峰 Archived 2017-12-14 at the Wayback Machine 赵志远 赵晓堃 王多---储氢材料概述
This page was last edited on 22 September 2023, at 17:44
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.