To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Landen's transformation

From Wikipedia, the free encyclopedia

Landen's transformation is a mapping of the parameters of an elliptic integral, useful for the efficient numerical evaluation of elliptic functions. It was originally due to John Landen and independently rediscovered by Carl Friedrich Gauss.[1]

YouTube Encyclopedic

  • 1/5
    Views:
    5 398 682
    136 168
    200 450
    2 310
    2 421
  • But what is the Fourier Transform? A visual introduction.
  • Rotating polygons 180 degrees about their center | Transformations | Geometry | Khan Academy
  • *** Fouriertransformation bzw Fourierreihe Teil 1
  • 11. Vorlesung Computergrafik SS 2014 - 3D Transformation - unistreams
  • Livestream zu DGL: Altklausur Differentialgleichungen für Ingenieure (Teil 2), TU Berlin

Transcription

Statement

The incomplete elliptic integral of the first kind F is

where is the modular angle. Landen's transformation states that if , , , are such that and , then[2]

Landen's transformation can similarly be expressed in terms of the elliptic modulus and its complement .

Complete elliptic integral

In Gauss's formulation, the value of the integral

is unchanged if and are replaced by their arithmetic and geometric means respectively, that is

Therefore,

From Landen's transformation we conclude

and .

Proof

The transformation may be effected by integration by substitution. It is convenient to first cast the integral in an algebraic form by a substitution of , giving

A further substitution of gives the desired result

This latter step is facilitated by writing the radical as

and the infinitesimal as

so that the factor of is recognized and cancelled between the two factors.

Arithmetic-geometric mean and Legendre's first integral

If the transformation is iterated a number of times, then the parameters and converge very rapidly to a common value, even if they are initially of different orders of magnitude. The limiting value is called the arithmetic-geometric mean of and , . In the limit, the integrand becomes a constant, so that integration is trivial

The integral may also be recognized as a multiple of Legendre's complete elliptic integral of the first kind. Putting

Hence, for any , the arithmetic-geometric mean and the complete elliptic integral of the first kind are related by

By performing an inverse transformation (reverse arithmetic-geometric mean iteration), that is

the relationship may be written as

which may be solved for the AGM of a pair of arbitrary arguments;

References

  1. ^ Gauss, C. F.; Nachlass (1876). "Arithmetisch geometrisches Mittel, Werke, Bd. 3". Königlichen Gesell. Wiss., Göttingen: 361–403.
  2. ^ Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
This page was last edited on 27 January 2024, at 19:22
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.