To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Laboratoire National des Champs Magnétiques Intenses

From Wikipedia, the free encyclopedia

LNCMI's Logo

The Laboratoire National des Champs Magnétiques Intenses[1] (LNCMI, French: National Laboratory for Intense Magnetic Fields) is a research institution of the CNRS.[2] It is based at two sites: one in Grenoble, specialised in static fields, and one in Toulouse, specialised in pulsed fields. The LNCMI provides a base for research related to high-strength magnetic fields by both resident scientists and visiting researchers from around the world. It is one of the three founding members of the European Magnetic Field Laboratory (EMFL) officially created in 2014.

YouTube Encyclopedic

  • 1/3
    Views:
    1 316
    1 196
    434
  • LNCMI Grenoble: science in high magnetic fields
  • LNCMI Toulouse: science in high magnetic fields
  • Canadian Institute For Advanced Research (CIFAR) - Collaborations in Quantum Materials

Transcription

There are only a few laboratories in the world where high magnetic field research can be performed. The European Magnetic Field Laboratory is the only place in Europe. The LNCMI, based in both Touluose and Grenoble, is one of the three founding members of the EMFL. In Grenoble the first static high field magnetic laboratory was built in the early sixties, and is today surrounded by other top-level research infrastructures. We use high magnetic fields because they work like a kind of magnifying glass, which allows us to determine the properties of matter. We are performing experiments in which a small sample of material is installed on a measurement probe. This probe is equipped with measurement wires and sensors and we insert this probe in a cryostat. And in this cryostat we can reach temperatures as low as minus 273 Celcius degrees, which is the absolute zero. This cryostat is installed in a magnet which is producing the high magnetic field. In grenoble we are producing static magnetic fields. So the value of the magnetic field in this experiment can be kept constant over a long time scale, which can be several hours. Many kinds of material can be studied with these high magnetic field techniques, in different areas of science, such as for example fundamental physics, applied physics, chemistry or biology. In Grenoble, seven high field magnets are operated. We have high field magnets up to 35 Tesla. Thirty-five Tesla is about 500 times higher than what you can obtain with this magnet. In fact we need two main things: high current up to 30.000 amps, but also of course we need cooling. To prevent the magnet from melting, we need a high flow rate of water: 300 liter per second. We have a new project, a hybrid project. It means a combination of a resistive magnet - using copper alloy - with a superconducting magnet. That will give together 43 Tesla. Working in the LNCMI and in the EMFL is teamwork. In Grenoble, we have 45 engineers and technicians working with about 25 reseachers. In the LNCMI we host scientists from all over the world to do their research. And each year we realise about 100 projects in our magnets. So here in the LNCMI we are mainly doing fundamental research. And in fundamental research the objective is to better understand the properties of matter. Sometimes we don't know what we're going to observe, but if the experiment is reliable and if the results can be understood at some point there may be some applications, technological applications of the physical properties observed.

History

The LNCMI was created in 2009 by the merger of the pulsed magnetic field Laboratory of Toulouse and the Grenoble High Magnetic Field Laboratory (GHMFL).

Toulouse site

The Service National des Champs Magnétiques Pulsés (SNCMP, French: National Service of the Field of Magnetic Pulses) was created at the French National Institute of Applied Sciences of Toulouse in the early 60’s under the direction of S. Askénazy. In the early 1990s, it became the Laboratoire National des Champs Magnétiques Pulsés (LNCMP), a Joint research unit of the CNRS associated with the French National Institute of Applied Sciences, and with the Paul Sabatier University of Toulouse.

Grenoble site

In 1962, when CNRS’s laboratories were built on the Polygone Scientifique of Grenoble, Louis Néel began conducting high magnetic field projects. Following those projects, the SNCI (National Service for high magnetic fields) was created in 1970. The dynamic created by the Élysée Treaty signed in 1963 between France and Germany led to collaboration between the SNCI and the Max Planck Institute from 1972 to 2004. This French-German collaboration led to the development of sciences under high magnetic fields in competition at that time with the MIT in Boston. The quantum hall effect was discovered at the laboratory and Klaus Van Klitzing received the Nobel Prize for this discovery in 1985. A world record of high magnetic field (31.35 Teslas) was achieved in 1987 within a collaboration including the CEA, the CNRS and the MPI. In 1990 a new 24 MW power supply was set into operation that led to the development of a new generation of magnet that reached progressively 33 T. In 2005 the Grenoble High Magnetic Field Laboratory became a CNRS laboratory and the German effort is focused on the development of the Dresden pulsed field laboratory. In 2009, the LNCMI is created by the merger of the Grenoble and the Toulouse laboratories. The development of static high magnetic field is pursued. 37 T is reached in 2018 paving the way for a new hybrid magnet to be set into operation in 2019.

Missions

The LNCMI has several missions

  • Generating High Magnetic fields:

At the Grenoble site, static magnetic fields of up to 37 Teslas are generated and long duration measurements are available thanks to the continuous cooling capacity of the neighboring river. A hybrid magnet aiming at a magnetic field of 43 Teslas of static field in a 34 mm room temperature bore is under construction.
At the Toulouse site, fields of up to 98 T are generated within a pulse of a hundred milliseconds. 200 T are reached for microseconds due to the Megagauss generator, however in this last case the coil is destroyed during the experiment leaving only the sample intact. Moreover, transportable generators and magnets have been developed at the Toulouse site in order to be used for research off-site.
To generate these fields and allow physics measurements, some large electrical and hydraulic installations as well as advanced instrumentation are required.

  • Producing research:

The scientific researches published by the LNCMI focused mainly on Condensed Matter Physics with a ongoing development on Magnetoscience and applied superconductivity.

  • Hosting other users:

As a research infrastructure, the LNCMI hosts researchers from all around the world so that they can conduct experiments using the highest magnetic fields possible in a given volume.

European Magnetic Field Laboratory

The LNCMI is a founding member of the European Magnetic Field Laboratory research consortium created in 2014.[3] The two other founding members are the High Magnetic Field Laboratory in Nijmegen, Netherlands, and the Dresden High Magnetic Field Laboratory in Germany.

Facilities at Grenoble

Superconducting Magnets @ LNCMI-G[4]
Magnetic field (T) Bore diameter (mm) Equipment temperature Experimental set-up
15.8 50 cold bore VTI: 1.8 K - 300 K EPR
9 80 cold bore VTI :1.4 K - 300 K NMR
15.4 / 17.1 52 cold bore VTI: 1.4 K - 300 K NMR
15/17 52 cold bore VTI: 1.4 K - 300 K, DR: 30 mK - 1.0 K NMR
15 / 17 52 cold bore DR: 30 mK - 4 K, Sample bore diameter 34 mm Mesoscopic physics
15 / 17 52 cold bore VTI: 1.5 K - 300 K, Sample bore diameter 31 mm Mesoscopic physics
12 /14 52 cold bore 3He: 300 mK - 8 K, Sample bore diameter 31 mm Mesoscopic physics
12 / 14 52 cold bore VTI: 1.2 K - 300 K Specific heat
14 / 16 50 warm bore, 33 cold bore 1.5 K - 300 K Optical spectroscopy
11 / 13 50 cold bore 4 K FIR spectroscopy
11 30 cold bore VTI: 1.2 K - 300 K Transport, In situ rotation, FIR-Laser
10 60 warm bore VTI: 1.2 K - 300 K
Resistive DC Magnets @ LNCMI-G[5]
Magnetic field

(T)

Bore diameter

(mm)

Homogeneity

in 1 cm3

Power (MW)
35 34 700x10−6 24
31 50 860x10−6 24
24 50 1300x10−6 12
19 170 600x10−6 24
13 130 30x10−6 12
10 376 250x10−6 12
6 284 450x10−6 12
  • There are no constraints in cooling power for these resistive magnets: operation at full power (24 MW) for unlimited time is possible. The typical operating time of the magnets is 3 x 6.5 hours per day at workdays, 1 x 11 hours at weekends. Two 12 MW magnets can operate in parallel.
  • The basic interface for magnet access is an x-y table mounted on an elevator which allows adjustment of height, tilt and horizontal alignment. Open diameter: 400 mm. Fixing: 12 tapped holes M8 on 420 mm diameter.
  • Users can control the field (value, ramping speed) on-site during their experiment manually or by a GPIB interface (Read/Write). Template Labview VIs are available.

External links

  1. ^ "Site web du LNCMI". Archived from the original on 2013-05-25. Retrieved 2013-06-07.
  2. ^ Site web du CNRS
  3. ^ "Site web EMFL". Archived from the original on 2013-05-27. Retrieved 2013-06-07.
  4. ^ "Laboratoire National des Champs Magnétiques Intenses - Grenoble - Superconducting magnets". lncmi-g.grenoble.cnrs.fr. Retrieved 2018-09-12.
  5. ^ "Laboratoire National des Champs Magnétiques Intenses - Grenoble - Resistive magnet facilities". lncmi-g.grenoble.cnrs.fr. Retrieved 2018-09-12.

This page was last edited on 31 May 2023, at 16:52
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.