To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

High-pressure electrolysis

From Wikipedia, the free encyclopedia

ITM Power's HGas electrolyser stacks, each operating at 80bar pressure
High-pressure PEM electrolyser.

High-pressure electrolysis (HPE) is the electrolysis of water by decomposition of water (H2O) into oxygen (O2) and hydrogen gas (H2) due to the passing of an electric current through the water.[1] The difference with a standard proton exchange membrane electrolyzer is the compressed hydrogen output around 12–20 megapascals (120–200 bar)[2] at 70 °C.[3] By pressurising the hydrogen in the electrolyser the need for an external hydrogen compressor is eliminated, the average energy consumption for internal differential pressure compression is around 3%.[4]

YouTube Encyclopedic

  • 1/2
    Views:
    1 011
    1 771
  • Fronius Energy Cell (HHO) - The Future of Power Generation
  • Water splitting

Transcription

Approaches

As the required compression power for water is less than that for hydrogen-gas the water is pumped up to a high-pressure,[5] in the other approach differential pressure is used.[6] There is also an importance for the electrolyser stacks to be able to accept a fluctuating electrical input, such as that found with renewable energy.[7] This then enables the ability to help with grid balancing and energy storage.

Ultrahigh-pressure electrolysis

Ultrahigh-pressure electrolysis is high-pressure electrolysis operating at 340–690 bars (5,000–10,000 psi).[8] At ultra-high pressures the water solubility and cross-permeation across the membrane of H2 and O2 is affecting hydrogen purity, modified PEMs are used to reduce cross-permeation in combination with catalytic H2/O2 recombiners to maintain H2 levels in O2 and O2 levels in H2 at values compatible with hydrogen safety requirements.[9][10]

Research

The US DOE believes that high-pressure electrolysis, supported by ongoing research and development, will contribute to the enabling and acceptance of technologies where hydrogen is the energy carrier between renewable energy resources and clean energy consumers.[11]

High-pressure electrolysis is being investigated by the DOE for efficient production of hydrogen from water. The target total in 2005 is $4.75 per gge H2 at an efficiency of 64%.[10] The total goal for the DOE in 2010 is $2.85 per gge H2 at an efficiency of 75%.[11] As of 2005 the DOE provided a total of $1,563,882 worth of funding for research.[10]

Mitsubishi is pursuing such technology with its High-pressure hydrogen energy generator (HHEG) project.[12]

The Forschungszentrum Jülich, in Jülich Germany is currently researching the cost reduction of components used in high-pressure PEM electrolysis in the EKOLYSER [13] project. The primary goal of this research is to improve performance and gas purity, reduce cost and volume of expensive materials and reach the alternative energy targets set forth by the German government for 2050 in the Energy Concept published in 2010.[14][15]

ThalesNano Energy released a lab-scale high pressure (100 bar) hydrogen generator as a replacement for hydrogen cylinders in chemistry laboratories. [16]

Commercial Products

Honda installed its Smart Hydrogen Station (SHS) in Los Angeles for use by fuel cell automobiles. [17]

See also

References

  1. ^ "High pressure electrolysis". Archived from the original on 2009-05-02. Retrieved 2009-01-06.
  2. ^ 2001-High pressure electrolysis – The key technology for efficient H.2[permanent dead link]
  3. ^ "Investigations of hydrogen compressor based on proton exchange membrane" (PDF). Archived from the original (PDF) on 2011-07-25. Retrieved 2009-04-13.
  4. ^ 2003-PHOEBUS-Pag.9 Archived 2009-03-27 at the Wayback Machine
  5. ^ Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis
  6. ^ Differential pressure
  7. ^ "Electrolyser Stacks | ITM Power". Archived from the original on 2013-05-12. Retrieved 2013-05-20.
  8. ^ XI.13 High-Efficiency, Ultra-High Pressure Electrolysis with Direct Linkage to Photovoltaic Arrays (Phase II Project) (Available here Accessed 2008-08-9.)
  9. ^ Hydrogen safety aspects related to high pressure PEM water electrolysis[permanent dead link]
  10. ^ a b c 2005 DOE H2 Program Review Alkaline, High Pressure Electrolysis. (Available here Accessed 2008-08-9.)
  11. ^ a b Alkaline, High Pressure Electrolysis (Available here Accessed 2008-08-9.)
  12. ^ Mitsubishi Monitor August and September 2004 (available here Accessed 2008-08-9.)
  13. ^ "Forschungszentrum Jülich EKOLYSER Project". Retrieved 27 May 2013.
  14. ^ "Das Energiekonzept der Bundesregierung 2010 und die Energiewende 2011" (PDF). Archived from the original (PDF) on 2013-02-26.
  15. ^ Carmo, M; Fritz D; Mergel J; Stolten D (2013). "A comprehensive review on PEM water electrolysis". Journal of Hydrogen Energy. 38 (12): 4901. doi:10.1016/j.ijhydene.2013.01.151.
  16. ^ "Hydrogen Generator & CO2 Cell Technology".
  17. ^ "Smart Hydrogen Station".

External links

This page was last edited on 22 August 2022, at 23:47
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.