To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Global element

From Wikipedia, the free encyclopedia

In category theory, a global element of an object A from a category is a morphism

where 1 is a terminal object of the category.[1] Roughly speaking, global elements are a generalization of the notion of "elements" from the category of sets, and they can be used to import set-theoretic concepts into category theory. However, unlike a set, an object of a general category need not be determined by its global elements (not even up to isomorphism). For example, the terminal object of the category Grph of graph homomorphisms has one vertex and one edge, a self-loop,[2] whence the global elements of a graph are its self-loops, conveying no information either about other kinds of edges, or about vertices having no self-loop, or about whether two self-loops share a vertex.

In an elementary topos the global elements of the subobject classifier Ω form a Heyting algebra when ordered by inclusion of the corresponding subobjects of the terminal object.[3] For example, Grph happens to be a topos, whose subobject classifier Ω is a two-vertex directed clique with an additional self-loop (so five edges, three of which are self-loops and hence the global elements of Ω). The internal logic of Grph is therefore based on the three-element Heyting algebra as its truth values.

A well-pointed category is a category that has enough global elements to distinguish every two morphisms. That is, for each pair of distinct arrows AB in the category, there should exist a global element whose compositions with them are different from each other.[1]

YouTube Encyclopedic

  • 1/3
    Views:
    661
    562
    486
  • Trusses (2/6): Transformation Matrix and the Global Element Stiffness Matrix
  • Trusses (1/6): Intro, FE Formulation, & Coordinate Systems
  • Trusses (4/6): Example - Transform Element Matrices and Assemble Global Stiffness Matrix

Transcription

References

  1. ^ a b Mac Lane, Saunders; Moerdijk, Ieke (1992), Sheaves in geometry and logic: A first introduction to topos theory, Universitext, New York: Springer-Verlag, p. 236, ISBN 0-387-97710-4, MR 1300636.
  2. ^ Gray, John W. (1989), "The category of sketches as a model for algebraic semantics", Categories in computer science and logic (Boulder, CO, 1987), Contemp. Math., 92, Amer. Math. Soc., Providence, RI, pp. 109–135, doi:10.1090/conm/092/1003198, MR 1003198.
  3. ^ Nourani, Cyrus F. (2014), A functorial model theory: Newer applications to algebraic topology, descriptive sets, and computing categories topos, Toronto, ON: Apple Academic Press, p. 38, doi:10.1201/b16416, ISBN 978-1-926895-92-5, MR 3203114.


This page was last edited on 24 June 2021, at 22:04
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.