To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Generalized Jacobian

From Wikipedia, the free encyclopedia

In algebraic geometry a generalized Jacobian is a commutative algebraic group associated to a curve with a divisor, generalizing the Jacobian variety of a complete curve. They were introduced by Maxwell Rosenlicht in 1954, and can be used to study ramified coverings of a curve, with abelian Galois group. Generalized Jacobians of a curve are extensions of the Jacobian of the curve by a commutative affine algebraic group, giving nontrivial examples of Chevalley's structure theorem.

YouTube Encyclopedic

  • 1/3
    Views:
    11 018
    892
    437
  • Hodge Theory -- From Abel to Deligne - Phillip Griffiths
  • Hodge theory and algebraic cycles - Phillip Griffiths
  • Paul Barton: Nonsmooth Differential Algebraic Equations

Transcription

Definition

Suppose C is a complete nonsingular curve, m an effective divisor on C, S is the support of m, and P is a fixed base point on C not in S. The generalized Jacobian Jm is a commutative algebraic group with a rational map f from C to Jm such that:

  • f takes P to the identity of Jm.
  • f is regular outside S.
  • f(D) = 0 whenever D is the divisor of a rational function g on C such that g≡1 mod m.

Moreover Jm is the universal group with these properties, in the sense that any rational map from C to a group with the properties above factors uniquely through Jm. The group Jm does not depend on the choice of base point P, though changing P changes that map f by a translation.

Structure of the generalized Jacobian

For m = 0 the generalized Jacobian Jm is just the usual Jacobian J, an abelian variety of dimension g, the genus of C.

For m a nonzero effective divisor the generalized Jacobian is an extension of J by a connected commutative affine algebraic group Lm of dimension deg(m)−1. So we have an exact sequence

0 → LmJmJ → 0

The group Lm is a quotient

0 → Gm → ΠUPi(ni)Lm → 0

of a product of groups Ri by the multiplicative group Gm of the underlying field. The product runs over the points Pi in the support of m, and the group UPi(ni) is the group of invertible elements of the local ring modulo those that are 1 mod Pini. The group UPi(ni) has dimension ni, the number of times Pi occurs in m. It is the product of the multiplicative group Gm by a unipotent group of dimension ni−1, which in characteristic 0 is isomorphic to a product of ni−1 additive groups.

Complex generalized Jacobians

Over the complex numbers, the algebraic structure of the generalized Jacobian determines an analytic structure of the generalized Jacobian making it a complex Lie group.

The analytic subgroup underlying the generalized Jacobian can be described as follows. (This does not always determine the algebraic structure as two non-isomorphic commutative algebraic groups may be isomorphic as analytic groups.) Suppose that C is a curve with an effective divisor m with support S. There is a natural map from the homology group H1(C − S) to the dual Ω(−m)* of the complex vector space Ω(−m) (1-forms with poles on m) induced by the integral of a 1-form over a 1-cycle. The analytic generalized Jacobian is then the quotient group Ω(−m)*/H1(C − S).

References

  • Rosenlicht, Maxwell (1954), "Generalized Jacobian varieties.", Ann. of Math., 2, 59 (3): 505–530, doi:10.2307/1969715, JSTOR 1969715, MR 0061422
  • Serre, Jean-Pierre (1988) [1959], Algebraic groups and class fields., Graduate Texts in Mathematics, vol. 117, New York: Springer-Verlag, ISBN 0-387-96648-X, MR 0103191
This page was last edited on 8 November 2023, at 12:16
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.