To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Field emission gun

From Wikipedia, the free encyclopedia

Schottky-emitter electron source of an Electron microscope

A field emission gun (FEG) is a type of electron gun in which a sharply pointed Müller-type[clarification needed] emitter[1]: 87–128  is held at several kilovolts negative potential relative to a nearby electrode, so that there is sufficient potential gradient at the emitter surface to cause field electron emission. Emitters are either of cold-cathode type, usually made of single crystal tungsten sharpened to a tip radius of about 100 nm, or of the Schottky type,[1]: 1–28  in which thermionic emission is enhanced by barrier lowering in the presence of a high electric field. Schottky emitters are made by coating a tungsten tip with a layer of zirconium oxide (ZrO2) decreasing the work function of the tip by approximately 2.7 eV.[2]

In electron microscopes, a field emission gun is used to produce an electron beam that is smaller in diameter, more coherent and with up to three orders of magnitude greater current density or brightness than can be achieved with conventional thermionic emitters such as tungsten or lanthanum hexaboride (LaB
6
)-tipped filaments. The result in both scanning and transmission electron microscopy is significantly improved signal-to-noise ratio and spatial resolution, and greatly increased emitter life and reliability compared with thermionic devices.

YouTube Encyclopedic

  • 1/3
    Views:
    5 639
    23 716
    22 687
  • 17 Schottky effect and field emission
  • Thermionic Emission | Electronics | Physics
  • Scanning Electron Microscopy (SEM): animation of 3 types of imaging

Transcription

References

  1. ^ a b Orloff, John, ed. (24 October 2008). "Review of ZrO/W Schottky Cathode". Handbook of Charged Particle Optics (2nd ed.). CRC Press. ISBN 978-1420045543. LCCN 2008013026. OCLC 778264838. OL 11816479M.
  2. ^ "Keywords | Glossary of TEM Terms | JEOL". www.jeol.co.jp.


This page was last edited on 17 March 2024, at 20:28
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.