To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Eilenberg–Ganea theorem

From Wikipedia, the free encyclopedia

In mathematics, particularly in homological algebra and algebraic topology, the Eilenberg–Ganea theorem states for every finitely generated group G with certain conditions on its cohomological dimension (namely ), one can construct an aspherical CW complex X of dimension n whose fundamental group is G. The theorem is named after Polish mathematician Samuel Eilenberg and Romanian mathematician Tudor Ganea. The theorem was first published in a short paper in 1957 in the Annals of Mathematics.[1]

Definitions

Group cohomology: Let be a group and let be the corresponding Eilenberg−MacLane space. Then we have the following singular chain complex which is a free resolution of over the group ring (where is a trivial -module):

where is the universal cover of and is the free abelian group generated by the singular -chains on . The group cohomology of the group with coefficient in a -module is the cohomology of this chain complex with coefficients in , and is denoted by .

Cohomological dimension: A group has cohomological dimension with coefficients in (denoted by ) if

Fact: If has a projective resolution of length at most , i.e., as trivial module has a projective resolution of length at most if and only if for all -modules and for all .[citation needed]

Therefore, we have an alternative definition of cohomological dimension as follows,

The cohomological dimension of G with coefficient in is the smallest n (possibly infinity) such that G has a projective resolution of length n, i.e., has a projective resolution of length n as a trivial module.

Eilenberg−Ganea theorem

Let be a finitely presented group and be an integer. Suppose the cohomological dimension of with coefficients in is at most , i.e., . Then there exists an -dimensional aspherical CW complex such that the fundamental group of is , i.e., .

Converse

Converse of this theorem is an consequence of cellular homology, and the fact that every free module is projective.

Theorem: Let X be an aspherical n-dimensional CW complex with π1(X) = G, then cdZ(G) ≤ n.

Related results and conjectures

For n = 1 the result is one of the consequences of Stallings theorem about ends of groups.[2]

Theorem: Every finitely generated group of cohomological dimension one is free.

For the statement is known as the Eilenberg–Ganea conjecture.

Eilenberg−Ganea Conjecture: If a group G has cohomological dimension 2 then there is a 2-dimensional aspherical CW complex X with .

It is known that given a group G with , there exists a 3-dimensional aspherical CW complex X with .

See also

References

  1. ^ **Eilenberg, Samuel; Ganea, Tudor (1957). "On the Lusternik–Schnirelmann category of abstract groups". Annals of Mathematics. 2nd Ser. 65 (3): 517–518. doi:10.2307/1970062. JSTOR 1970062. MR 0085510.
  2. ^ * John R. Stallings, "On torsion-free groups with infinitely many ends", Annals of Mathematics 88 (1968), 312–334. MR0228573
This page was last edited on 31 July 2023, at 16:16
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.