To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Division polynomials

From Wikipedia, the free encyclopedia

In mathematics the division polynomials provide a way to calculate multiples of points on elliptic curves and to study the fields generated by torsion points. They play a central role in the study of counting points on elliptic curves in Schoof's algorithm.

YouTube Encyclopedic

  • 1/5
    Views:
    393 154
    474 980
    44 458
    60 697
    18 252
  • ❤︎² How to do Long Division with Polynomials (mathbff)
  • Long Division of Polynomials - A slightly harder example
  • Dividing Polynomials: Reduction & Long Division [fbt]
  • Long Division of Polynomials
  • Division Algorithm for Polynomials | Long division of Polynomials examples

Transcription

Definition

The set of division polynomials is a sequence of polynomials in with free variables that is recursively defined by:

The polynomial is called the nth division polynomial.

Properties

  • In practice, one sets , and then and .
  • The division polynomials form a generic elliptic divisibility sequence over the ring .
  • If an elliptic curve is given in the Weierstrass form over some field , i.e. , one can use these values of and consider the division polynomials in the coordinate ring of . The roots of are the -coordinates of the points of , where is the torsion subgroup of . Similarly, the roots of are the -coordinates of the points of .
  • Given a point on the elliptic curve over some field , we can express the coordinates of the nth multiple of in terms of division polynomials:
where and are defined by:

Using the relation between and , along with the equation of the curve, the functions , , are all in .

Let be prime and let be an elliptic curve over the finite field , i.e., . The -torsion group of over is isomorphic to if , and to or if . Hence the degree of is equal to either , , or 0.

René Schoof observed that working modulo the th division polynomial allows one to work with all -torsion points simultaneously. This is heavily used in Schoof's algorithm for counting points on elliptic curves.

See also

References

  • A. Enge: Elliptic Curves and their Applications to Cryptography: An Introduction. Kluwer Academic Publishers, Dordrecht, 1999.
  • N. Koblitz: A Course in Number Theory and Cryptography, Graduate Texts in Math. No. 114, Springer-Verlag, 1987. Second edition, 1994
  • Müller : Die Berechnung der Punktanzahl von elliptischen kurven über endlichen Primkörpern. Master's Thesis. Universität des Saarlandes, Saarbrücken, 1991.
  • G. Musiker: Schoof's Algorithm for Counting Points on . Available at https://www-users.cse.umn.edu/~musiker/schoof.pdf
  • Schoof: Elliptic Curves over Finite Fields and the Computation of Square Roots mod p. Math. Comp., 44(170):483–494, 1985. Available at http://www.mat.uniroma2.it/~schoof/ctpts.pdf
  • R. Schoof: Counting Points on Elliptic Curves over Finite Fields. J. Theor. Nombres Bordeaux 7:219–254, 1995. Available at http://www.mat.uniroma2.it/~schoof/ctg.pdf
  • L. C. Washington: Elliptic Curves: Number Theory and Cryptography. Chapman & Hall/CRC, New York, 2003.
  • J. Silverman: The Arithmetic of Elliptic Curves, Springer-Verlag, GTM 106, 1986.
This page was last edited on 28 December 2023, at 13:19
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.