To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Birkhoff–Grothendieck theorem

From Wikipedia, the free encyclopedia

In mathematics, the Birkhoff–Grothendieck theorem classifies holomorphic vector bundles over the complex projective line. In particular every holomorphic vector bundle over is a direct sum of holomorphic line bundles. The theorem was proved by Alexander Grothendieck (1957, Theorem 2.1),[1] and is more or less equivalent to Birkhoff factorization introduced by George David Birkhoff (1909).[2]

Statement

More precisely, the statement of the theorem is as the following.

Every holomorphic vector bundle on is holomorphically isomorphic to a direct sum of line bundles:

The notation implies each summand is a Serre twist some number of times of the trivial bundle. The representation is unique up to permuting factors.

Generalization

The same result holds in algebraic geometry for algebraic vector bundle over for any field .[3] It also holds for with one or two orbifold points, and for chains of projective lines meeting along nodes. [4]

Applications

One application of this theorem is it gives a classification of all coherent sheaves on . We have two cases, vector bundles and coherent sheaves supported along a subvariety, so where n is the degree of the fat point at . Since the only subvarieties are points, we have a complete classification of coherent sheaves.

See also

References

  1. ^ Grothendieck, Alexander (1957). "Sur la classification des fibrés holomorphes sur la sphère de Riemann". American Journal of Mathematics. 79 (1): 121–138. doi:10.2307/2372388. JSTOR 2372388. S2CID 120532002.
  2. ^ Birkhoff, George David (1909). "Singular points of ordinary linear differential equations". Transactions of the American Mathematical Society. 10 (4): 436–470. doi:10.2307/1988594. ISSN 0002-9947. JFM 40.0352.02. JSTOR 1988594.
  3. ^ Hazewinkel, Michiel; Martin, Clyde F. (1982). "A short elementary proof of Grothendieck's theorem on algebraic vectorbundles over the projective line". Journal of Pure and Applied Algebra. 25 (2): 207–211. doi:10.1016/0022-4049(82)90037-8.
  4. ^ Martens, Johan; Thaddeus, Michael (2016). "Variations on a theme of Grothendieck". Compositio Mathematica. 152: 62–98. arXiv:1210.8161. Bibcode:2012arXiv1210.8161M. doi:10.1112/S0010437X15007484. S2CID 119716554.

Further reading

External links


This page was last edited on 5 July 2023, at 15:55
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.