To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Bousso's holographic bound

From Wikipedia, the free encyclopedia

The Bousso bound captures a fundamental relation between quantum information and the geometry of space and time. It appears to be an imprint of a unified theory that combines quantum mechanics with Einstein's general relativity.[1] The study of black hole thermodynamics and the information paradox led to the idea of the holographic principle: the entropy of matter and radiation in a spatial region cannot exceed the BekensteinHawking entropy of the boundary of the region, which is proportional to the boundary area. However, this "spacelike" entropy bound fails in cosmology; for example, it does not hold true in our universe.[2]

Raphael Bousso showed that the spacelike entropy bound is violated more broadly in many dynamical settings. For example, the entropy of a collapsing star, once inside a black hole, will eventually exceed its surface area.[3] Due to relativistic length contraction, even ordinary thermodynamic systems can be enclosed in an arbitrarily small area.[1]

To preserve the holographic principle, Bousso proposed a different law, which does not follow from black hole physics: the covariant entropy bound[3] or Bousso bound.[4][5] Its central geometric object is a lightsheet, defined as a region traced out by non-expanding light-rays emitted orthogonally from an arbitrary surface B. For example, if B is a sphere at a moment of time in Minkowski space, then there are two lightsheets, generated by the past or future directed light-rays emitted towards the interior of the sphere at that time. If B is a sphere surrounding a large region in an expanding universe (an anti-trapped sphere), then there are again two light-sheets that can be considered. Both are directed towards the past, to the interior or the exterior. If B is a trapped surface, such as the surface of a star in its final stages of gravitational collapse, then the lightsheets are directed to the future.

The Bousso bound evades all known counterexamples to the spacelike bound.[1][3] It was proven to hold when the entropy is approximately a local current, under weak assumptions.[4][5][6] In weakly gravitating settings, the Bousso bound implies the Bekenstein bound[7] and admits a formulation that can be proven to hold in any relativistic quantum field theory.[8] The lightsheet construction can be inverted to construct holographic screens for arbitrary spacetimes.[9]

A more recent proposal, the quantum focusing conjecture,[10] implies the original Bousso bound and so can be viewed as a stronger version of it. In the limit where gravity is negligible, the quantum focusing conjecture predicts the quantum null energy condition,[11] which relates the local energy density to a derivative of the entropy. This relation was later proven to hold in any relativistic quantum field theory, such as the Standard Model.[11][12][13][14]

YouTube Encyclopedic

  • 1/3
    Views:
    530
    161 858
    3 876
  • Entropy Bounds, Light-sheets, and the Holographic Principle in Cosmology, part 1 - Raphael Bousso
  • The World as a Hologram
  • 6. Holographic Principle

Transcription

References

  1. ^ a b c Bousso, Raphael (5 August 2002). "The holographic principle". Reviews of Modern Physics. 74 (3): 825–874. arXiv:hep-th/0203101. Bibcode:2002RvMP...74..825B. doi:10.1103/RevModPhys.74.825. S2CID 55096624.
  2. ^ Fischler, W.; Susskind, L. (1998-06-11). "Holography and Cosmology". arXiv:hep-th/9806039.
  3. ^ a b c Bousso, Raphael (13 August 1999). "A Covariant Entropy Conjecture". Journal of High Energy Physics. 1999 (7): 004. arXiv:hep-th/9905177. Bibcode:1999JHEP...07..004B. doi:10.1088/1126-6708/1999/07/004. S2CID 9545752.
  4. ^ a b Flanagan, Eanna E.; Marolf, Donald; Wald, Robert M. (2000-09-27). "Proof of Classical Versions of the Bousso Entropy Bound and of the Generalized Second Law". Physical Review D. 62 (8): 084035. arXiv:hep-th/9908070. Bibcode:2000PhRvD..62h4035F. doi:10.1103/PhysRevD.62.084035. ISSN 0556-2821. S2CID 7648994.
  5. ^ a b Strominger, Andrew; Thompson, David (2004-08-09). "A Quantum Bousso Bound". Physical Review D. 70 (4): 044007. arXiv:hep-th/0303067. Bibcode:2004PhRvD..70d4007S. doi:10.1103/PhysRevD.70.044007. ISSN 1550-7998. S2CID 18666260.
  6. ^ Bousso, Raphael; Flanagan, Eanna E.; Marolf, Donald (2003-09-03). "Simple sufficient conditions for the generalized covariant entropy bound". Physical Review D. 68 (6): 064001. arXiv:hep-th/0305149. Bibcode:2003PhRvD..68f4001B. doi:10.1103/PhysRevD.68.064001. ISSN 0556-2821. S2CID 119049155.
  7. ^ Bousso, Raphael (2003-03-27). "Light-sheets and Bekenstein's bound". Physical Review Letters. 90 (12): 121302. arXiv:hep-th/0210295. doi:10.1103/PhysRevLett.90.121302. ISSN 0031-9007. PMID 12688865. S2CID 41570896.
  8. ^ Bousso, Raphael; Casini, Horacio; Fisher, Zachary; Maldacena, Juan (2014-08-01). "Proof of a Quantum Bousso Bound". Physical Review D. 90 (4): 044002. arXiv:1404.5635. Bibcode:2014PhRvD..90d4002B. doi:10.1103/PhysRevD.90.044002. ISSN 1550-7998. S2CID 119218211.
  9. ^ Bousso, Raphael (1999-06-28). "Holography in General Space-times". Journal of High Energy Physics. 1999 (6): 028. arXiv:hep-th/9906022. Bibcode:1999JHEP...06..028B. doi:10.1088/1126-6708/1999/06/028. ISSN 1029-8479. S2CID 119518763.
  10. ^ Bousso, Raphael; Fisher, Zachary; Leichenauer, Stefan; Wall, and Aron C. (2016-03-16). "A Quantum Focussing Conjecture". Physical Review D. 93 (6): 064044. arXiv:1506.02669. Bibcode:2016PhRvD..93f4044B. doi:10.1103/PhysRevD.93.064044. ISSN 2470-0010. S2CID 116979904.
  11. ^ a b Bousso, Raphael; Fisher, Zachary; Koeller, Jason; Leichenauer, Stefan; Wall, Aron C. (2016-01-12). "Proof of the Quantum Null Energy Condition". Physical Review D. 93 (2): 024017. arXiv:1509.02542. Bibcode:2016PhRvD..93b4017B. doi:10.1103/PhysRevD.93.024017. ISSN 2470-0010. S2CID 59469752.
  12. ^ Balakrishnan, Srivatsan; Faulkner, Thomas; Khandker, Zuhair U.; Wang, Huajia (September 2019). "A General Proof of the Quantum Null Energy Condition". Journal of High Energy Physics. 2019 (9): 20. arXiv:1706.09432. Bibcode:2019JHEP...09..020B. doi:10.1007/JHEP09(2019)020. ISSN 1029-8479. S2CID 85530291.
  13. ^ Wall, Aron C. (2017-04-10). "A Lower Bound on the Energy Density in Classical and Quantum Field Theories". Physical Review Letters. 118 (15): 151601. arXiv:1701.03196. Bibcode:2017PhRvL.118o1601W. doi:10.1103/PhysRevLett.118.151601. ISSN 0031-9007. PMID 28452547. S2CID 28785629.
  14. ^ Ceyhan, Fikret; Faulkner, Thomas (2019-03-20). "Recovering the QNEC from the ANEC". arXiv:1812.04683 [hep-th].
This page was last edited on 24 July 2022, at 12:45
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.