To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Raphael Bousso

From Wikipedia, the free encyclopedia

Raphael Bousso (/ˈbs/) (born 1971) is a theoretical physicist and cosmologist. He is a professor at the Berkeley Center for Theoretical Physics in the Department of Physics, UC Berkeley. He is known for the Bousso bound on the information content of the universe.[1][2][3] With Joseph Polchinski, Bousso proposed the string theory landscape as a solution to the cosmological constant problem.[4][5]

YouTube Encyclopedic

  • 1/3
    Views:
    17 084
    10 332
    10 374
  • The Black Hole Mystery That Keeps Physicist Raphael Bousso Up At Night
  • Raphael Bousso - Physics of Information
  • What Exists? A panel discussion with Don Page, Raphael Bousso, Laura Mersini-Houghton, Carlo Rovelli

Transcription

Life and career

Bousso was born in Haifa, Israel, the son of late scientist Dino Bousso. He grew up near Augsburg, Germany,[6] where he studied physics from 1990 until 1993. Bousso earned his Ph.D. at Cambridge University in 1997; his doctoral advisor was Stephen Hawking. Bousso did postdoctoral research at Stanford University until 2000, and at the Kavli Institute for Theoretical Physics in Santa Barbara until 2002. In 2002/03, Bousso was a fellow at the Harvard University physics department and the Radcliffe Institute for Advanced Study. Since 2002, he has been a professor in the physics department at the University of California, Berkeley. In 2012, Bousso was elected Fellow of the American Physical Society "for fundamental discoveries in the field of quantum cosmology, including the covariant entropy bound and the string landscape."[7]

Research

Bousso's research is focused on quantum gravity and cosmology, particularly through the study of quantum information.[8] His 1999 covariant entropy bound[1] (Bousso bound) established a general relation between quantum information and the geometry of spacetime (i.e., gravity).[9] The Bousso bound has since been refined and strengthened, leading to provable new results in quantum field theory, such as the quantum null energy condition.[10][11][12][13] Bousso has also worked on the black hole information paradox (firewall problem).[14] Since 2018, he has led a consortium of theoretical and experimental physicists exploring and developing the relations between quantum gravity, quantum information, and quantum computing.[15][16]

In 2000, Bousso and Joseph Polchinski argued that string theory has many long-lived vacua, including solutions compatible with the observed positive value of the cosmological constant (vacuum energy).[4] This came to be called the "landscape of string theory."[17][5] Bousso has developed an approach to the cosmological measure problem,[18] with the ultimate goal of testing the string theory landscape.[19]

References

  1. ^ a b Bousso, Raphael (13 Aug 1999). "A Covariant Entropy Conjecture". Journal of High Energy Physics. 1999 (7): 004. arXiv:hep-th/9905177. Bibcode:1999JHEP...07..004B. doi:10.1088/1126-6708/1999/07/004. S2CID 9545752.
  2. ^ Bousso, Raphael (9 Aug 1999). "Holography in General Space-times". Journal of High Energy Physics. 1999 (6): 028. arXiv:hep-th/9906022. Bibcode:1999JHEP...06..028B. doi:10.1088/1126-6708/1999/06/028. S2CID 119518763.
  3. ^ Bousso, Raphael (5 Aug 2002). "The holographic principle". Reviews of Modern Physics. 74 (3): 825–874. arXiv:hep-th/0203101. Bibcode:2002RvMP...74..825B. doi:10.1103/RevModPhys.74.825. S2CID 55096624.
  4. ^ a b Bousso, Raphael; Polchinski, Joseph (14 Jul 2000). "Quantization of four form fluxes and dynamical neutralization of the cosmological constant". Journal of High Energy Physics. 2000 (6): 006. arXiv:hep-th/0004134. Bibcode:2000JHEP...06..006B. doi:10.1088/1126-6708/2000/06/006. S2CID 15129323.
  5. ^ a b Bousso, Raphael; Polchinski, Joseph (2004). "The string theory landscape". Scientific American. 291 (3): 78–87. Bibcode:2004SciAm.291c..78B. doi:10.1038/scientificamerican0904-78. PMID 15376755.
  6. ^ "Bousso group members". Retrieved 2020-10-10.
  7. ^ "APS Fellowship 2012".
  8. ^ "Bousso Group". Retrieved 2010-11-13.
  9. ^ "The Holographic Principle". Scientific American. Retrieved 2018-08-27.
  10. ^ "Proof of a Quantum Bousso Bound".
  11. ^ "Proof of the Quantum Null Energy Condition".
  12. ^ "A General Proof of the Quantum Null Energy Condition".
  13. ^ "Black Holes, Quantum Information, and Unification". Retrieved 2018-08-27.
  14. ^ Overbye, Dennis (12 August 2013). "A Black Hole Mystery Wrapped in a Firewall Paradox, New York Times, August 13, 2013". The New York Times. Retrieved 2018-08-27.
  15. ^ "GeoFlow Award" (PDF). Retrieved October 10, 2020.
  16. ^ "geoflow". sites.google.com. Retrieved 2020-10-11.
  17. ^ L. Susskind, "The anthropic landscape of string theory", arXiv:hep-th/0302219.
  18. ^ Bousso, Raphael (2006-11-06). "Holographic probabilities in eternal inflation". Physical Review Letters. 97 (19): 191302. arXiv:hep-th/0605263. Bibcode:2006PhRvL..97s1302B. doi:10.1103/PhysRevLett.97.191302. ISSN 0031-9007. PMID 17155610. S2CID 977375.
  19. ^ "A geometric solution to the coincidence problem, and the size of the landscape as the origin of hierarchy".

External links

This page was last edited on 4 April 2024, at 05:23
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.