To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Cotlar–Stein lemma

From Wikipedia, the free encyclopedia

The Cotlar–Stein almost orthogonality lemma is a mathematical lemma in the field of functional analysis. It may be used to obtain information on the operator norm on an operator, acting from one Hilbert space into another, when the operator can be decomposed into almost orthogonal pieces.

The original version of this lemma (for self-adjoint and mutually commuting operators) was proved by Mischa Cotlar in 1955[1] and allowed him to conclude that the Hilbert transform is a continuous linear operator in without using the Fourier transform. A more general version was proved by Elias Stein.[2]

YouTube Encyclopedic

  • 1/1
    Views:
    1 153
  • Barry Simon | Tales of Our Forefathers

Transcription

Statement of the lemma

Let be two Hilbert spaces. Consider a family of operators , , with each a bounded linear operator from to .

Denote

The family of operators , is almost orthogonal if

The Cotlar–Stein lemma states that if are almost orthogonal, then the series converges in the strong operator topology, and

Proof

If T1, …, Tn is a finite collection of bounded operators, then[3]

So under the hypotheses of the lemma,

It follows that

and that

Hence, the partial sums

form a Cauchy sequence.

The sum is therefore absolutely convergent with the limit satisfying the stated inequality.

To prove the inequality above set

with |aij| ≤ 1 chosen so that

Then

Hence

Taking 2mth roots and letting m tend to ∞,

which immediately implies the inequality.

Generalization

There is a generalization of the Cotlar–Stein lemma, with sums replaced by integrals.[4][5] Let X be a locally compact space and μ a Borel measure on X. Let T(x) be a map from X into bounded operators from E to F which is uniformly bounded and continuous in the strong operator topology. If

are finite, then the function T(x)v is integrable for each v in E with

The result can be proved by replacing sums by integrals in the previous proof, or by using Riemann sums to approximate the integrals.

Example

Here is an example of an orthogonal family of operators. Consider the infinite-dimensional matrices

and also

Then for each , hence the series does not converge in the uniform operator topology.

Yet, since and for , the Cotlar–Stein almost orthogonality lemma tells us that

converges in the strong operator topology and is bounded by 1.

Notes

  1. ^ Cotlar 1955
  2. ^ Stein 1993
  3. ^ Hörmander 1994
  4. ^ Knapp & Stein 1971
  5. ^ Calderon, Alberto; Vaillancourt, Remi (1971). "On the boundedness of pseudo-differential operators". Journal of the Mathematical Society of Japan. 23 (2): 374–378. doi:10.2969/jmsj/02320374.

References

  • Cotlar, Mischa (1955), "A combinatorial inequality and its application to L2 spaces", Math. Cuyana, 1: 41–55
  • Hörmander, Lars (1994), Analysis of Partial Differential Operators III: Pseudodifferential Operators (2nd ed.), Springer-Verlag, pp. 165–166, ISBN 978-3-540-49937-4
  • Knapp, Anthony W.; Stein, Elias (1971), "Intertwining operators for semisimple Lie groups", Ann. Math., 93: 489–579, doi:10.2307/1970887, JSTOR 1970887
  • Stein, Elias (1993), Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, ISBN 0-691-03216-5
This page was last edited on 14 May 2024, at 07:05
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.