To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Convex position

From Wikipedia, the free encyclopedia

In discrete and computational geometry, a set of points in the Euclidean plane or a higher-dimensional Euclidean space is said to be in convex position or convex independent if none of the points can be represented as a convex combination of the others.[1] A finite set of points is in convex position if all of the points are vertices of their convex hull.[1] More generally, a family of convex sets is said to be in convex position if they are pairwise disjoint and none of them is contained in the convex hull of the others.[2]

An assumption of convex position can make certain computational problems easier to solve. For instance, the traveling salesman problem, NP-hard for arbitrary sets of points in the plane, is trivial for points in convex position: the optimal tour is the convex hull.[3] Similarly, the minimum-weight triangulation of planar point sets is NP-hard for arbitrary point sets,[4] but solvable in polynomial time by dynamic programming for points in convex position.[5]

The Erdős–Szekeres theorem guarantees that every set of points in general position (no three in a line) in two or more dimensions has at least a logarithmic number of points in convex position.[6] If points are chosen uniformly at random in a unit square, the probability that they are in convex position is[7]

The McMullen problem asks for the maximum number such that every set of points in general position in a -dimensional projective space has a projective transformation to a set in convex position. Known bounds are .[8]

YouTube Encyclopedic

  • 1/3
    Views:
    503
    2 727
    14 628
  • 044: Short selling, bear markets, trading edge, position sizing and trading psychology.
  • Backlit, Collapsible Tower and Backlit Displays
  • Mod-08 Lec-19 Delaunay Triangulation.

Transcription

References

  1. ^ a b Matoušek, Jiří (2002), Lectures on Discrete Geometry, Graduate Texts in Mathematics, Springer-Verlag, p. 30, ISBN 978-0-387-95373-1
  2. ^ Tóth, Géza; Valtr, Pavel (2005), "The Erdős-Szekeres theorem: upper bounds and related results", Combinatorial and computational geometry, Math. Sci. Res. Inst. Publ., vol. 52, Cambridge: Cambridge Univ. Press, pp. 557–568, MR 2178339
  3. ^ Deĭneko, Vladimir G.; Hoffmann, Michael; Okamoto, Yoshio; Woeginger, Gerhard J. (2006), "The traveling salesman problem with few inner points", Operations Research Letters, 34 (1): 106–110, doi:10.1016/j.orl.2005.01.002, MR 2186082
  4. ^ Mulzer, Wolfgang; Rote, Günter (2008), "Minimum-weight triangulation is NP-hard", Journal of the ACM, 55 (2), Article A11, arXiv:cs.CG/0601002, doi:10.1145/1346330.1346336
  5. ^ Klincsek, G. T. (1980), "Minimal triangulations of polygonal domains", Annals of Discrete Mathematics, 9: 121–123, doi:10.1016/s0167-5060(08)70044-x, ISBN 9780444861115
  6. ^ Erdős, Paul; Szekeres, George (1935), "A combinatorial problem in geometry", Compositio Mathematica, 2: 463–470
  7. ^ Valtr, P. (1995), "Probability that n random points are in convex position", Discrete & Computational Geometry, 13 (3–4): 637–643, doi:10.1007/BF02574070, MR 1318803
  8. ^ Forge, David; Las Vergnas, Michel; Schuchert, Peter (2001), "10 points in dimension 4 not projectively equivalent to the vertices of a convex polytope", Combinatorial geometries (Luminy, 1999), European Journal of Combinatorics, 22 (5): 705–708, doi:10.1006/eujc.2000.0490, MR 1845494
This page was last edited on 18 December 2023, at 10:14
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.