To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Cohomological invariant

From Wikipedia, the free encyclopedia

In mathematics, a cohomological invariant of an algebraic group G over a field is an invariant of forms of G taking values in a Galois cohomology group.

YouTube Encyclopedic

  • 1/3
    Views:
    364
    4 844
    358
  • Luca Migliorini, The Cohomology Groups of Hilbert Schemes and Compactified Jacobians of Planar Curve
  • Basic Notions Seminar Series: An introduction to cohomology, Speaker: Ben Mares
  • Alexander Vishik: Subtle Stiefel-Whitney classes and the J-invariant of quadrics

Transcription

Definition

Suppose that G is an algebraic group defined over a field K, and choose a separably closed field K containing K. For a finite extension L of K in K let ΓL be the absolute Galois group of L. The first cohomology H1(L, G) = H1L, G) is a set classifying the ``G-torsors over L, and is a functor of L.

A cohomological invariant of G of dimension d taking values in a ΓK-module M is a natural transformation of functors (of L) from H1(L, G) to Hd(L, M).

In other words a cohomological invariant associates an element of an abelian cohomology group to elements of a non-abelian cohomology set.

More generally, if A is any functor from finitely generated extensions of a field to sets, then a cohomological invariant of A of dimension d taking values in a Γ-module M is a natural transformation of functors (of L) from A to Hd(L, M).

The cohomological invariants of a fixed group G or functor A, dimension d and Galois module M form an abelian group denoted by Invd(G,M) or Invd(A,M).

Examples

  • Suppose A is the functor taking a field to the isomorphism classes of dimension n etale algebras over it. The cohomological invariants with coefficients in Z/2Z is a free module over the cohomology of k with a basis of elements of degrees 0, 1, 2, ..., m where m is the integer part of n/2.
  • The Hasse−Witt invariant of a quadratic form is essentially a dimension 2 cohomological invariant of the corresponding spin group taking values in a group of order 2.
  • If G is a quotient of a group by a smooth finite central subgroup C, then the boundary map of the corresponding exact sequence gives a dimension 2 cohomological invariant with values in C. If G is a special orthogonal group and the cover is the spin group then the corresponding invariant is essentially the Hasse−Witt invariant.
  • If G is the orthogonal group of a quadratic form in characteristic not 2, then there are Stiefel–Whitney classes for each positive dimension which are cohomological invariants with values in Z/2Z. (These are not the topological Stiefel–Whitney classes of a real vector bundle, but are the analogues of them for vector bundles over a scheme.) For dimension 1 this is essentially the discriminant, and for dimension 2 it is essentially the Hasse−Witt invariant.
  • The Arason invariant e3 is a dimension 3 invariant of some even dimensional quadratic forms q with trivial discriminant and trivial Hasse−Witt invariant. It takes values in Z/2Z. It can be used to construct a dimension 3 cohomological invariant of the corresponding spin group as follows. If u is in H1(K, Spin(q)) and p is the quadratic form corresponding to the image of u in H1(K, O(q)), then e3(pq) is the value of the dimension 3 cohomological invariant on u.
  • The Merkurjev−Suslin invariant is a dimension 3 invariant of a special linear group of a central simple algebra of rank n taking values in the tensor square of the group of nth roots of unity. When n=2 this is essentially the Arason invariant.
  • For absolutely simple simply connected groups G, the Rost invariant is a dimension 3 invariant taking values in Q/Z(2) that in some sense generalizes the Arason invariant and the Merkurjev−Suslin invariant to more general groups.

References

  • Garibaldi, Skip; Merkurjev, Alexander; Serre, Jean-Pierre (2003), Cohomological invariants in Galois cohomology, University Lecture Series, vol. 28, Providence, RI: American Mathematical Society, ISBN 0-8218-3287-5, MR 1999383
  • Knus, Max-Albert; Merkurjev, Alexander; Rost, Markus; Tignol, Jean-Pierre (1998), The book of involutions, Colloquium Publications, vol. 44, Providence, RI: American Mathematical Society, ISBN 0-8218-0904-0, Zbl 0955.16001
  • Serre, Jean-Pierre (1995), "Cohomologie galoisienne: progrès et problèmes", Astérisque, Séminaire Bourbaki, Vol. 1993/94. Exp. No. 783, 227: 229–257, MR 1321649
This page was last edited on 21 February 2024, at 15:51
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.