To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

From Wikipedia, the free encyclopedia

Graph of burst noise
Graph of burst noise

Burst noise is a type of electronic noise that occurs in semiconductors and ultra-thin gate oxide films.[1] It is also called random telegraph noise (RTN), popcorn noise, impulse noise, bi-stable noise, or random telegraph signal (RTS) noise.

It consists of sudden step-like transitions between two or more discrete voltage or current levels, as high as several hundred microvolts, at random and unpredictable times. Each shift in offset voltage or current often lasts from several milliseconds to seconds, and sounds like popcorn popping if hooked up to an audio speaker.[2]

Popcorn noise was first observed in early point contact diodes, then re-discovered during the commercialization of one of the first semiconductor op-amps; the 709.[3] No single source of popcorn noise is theorized to explain all occurrences, however the most commonly invoked cause is the random trapping and release of charge carriers at thin film interfaces or at defect sites in bulk semiconductor crystal. In cases where these charges have a significant impact on transistor performance (such as under an MOS gate or in a bipolar base region), the output signal can be substantial. These defects can be caused by manufacturing processes, such as heavy ion implantation, or by unintentional side-effects such as surface contamination.[4][5]

Individual op-amps can be screened for popcorn noise with peak detector circuits, to minimize the amount of noise in a specific application.[6]

Burst noise is modeled mathematically by means of the telegraph process, a Markovian continuous-time stochastic process that jumps discontinuously between two distinct values.

YouTube Encyclopedic

  • 1/3
    2 649
    1 431
  • Burst City Original Trailer (Sogo Ishii, 1982)
  • Nitrogen Gas Burst Agitation ( Processing ) For Photographic Sheet Film
  • Hybrid - Burst - Skrillex/Kill the Noise |Dubstep Dance|


See also


  1. ^ Ranjan, A.; Raghavan, N.; Shubhakar, K.; Thamankar, R.; Molina, J.; O'Shea, S. J.; Bosman, M.; Pey, K. L. (2016-04-01). "CAFM based spectroscopy of stress-induced defects in HfO2 with experimental evidence of the clustering model and metastable vacancy defect state". 2016 IEEE International Reliability Physics Symposium (IRPS): 7A–4–1–7A–4–7. doi:10.1109/IRPS.2016.7574576. ISBN 978-1-4673-9137-5.
  2. ^ Rajendran, Bipin. "Random Telegraph Signal (Review of Noise in Semiconductor Devices and Modeling of Noise in Surrounding Gate MOSFET)" (PDF). Archived from the original (PDF) on April 14, 2006.
  3. ^ "Operational Amplifier Noise Prediction" (PDF). Intersil Application Note. Archived from the original (PDF) on 2007-04-14. Retrieved 2006-10-12.
  4. ^ "Noise Analysis In Operational Amplifier Circuits" (PDF). Texas Instruments application report.
  5. ^ Lundberg, Kent H. "Noise Sources in Bulk CMOS" (PDF).
  6. ^ "Op-Amp Noise can be Deafening Too" (PDF). Today, although popcorn noise can still occasionally occur during manufacturing, the phenomenon is sufficiently well understood that affected devices are detected and scrapped during test.

External links

This page was last edited on 2 October 2020, at 19:50
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.