To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Fraction of variance unexplained

From Wikipedia, the free encyclopedia

In statistics, the fraction of variance unexplained (FVU) in the context of a regression task is the fraction of variance of the regressand (dependent variable) Y which cannot be explained, i.e., which is not correctly predicted, by the explanatory variables X.

Formal definition

Suppose we are given a regression function yielding for each an estimate where is the vector of the ith observations on all the explanatory variables.[1]:181 We define the fraction of variance unexplained (FVU) as:

where R2 is the coefficient of determination and VARerr and VARtot are the variance of the residuals and the sample variance of the dependent variable. SSerr (the sum of squared predictions errors, equivalently the residual sum of squares), SStot (the total sum of squares), and SSreg (the sum of squares of the regression, equivalently the explained sum of squares) are given by

Alternatively, the fraction of variance unexplained can be defined as follows:

where MSE(f) is the mean squared error of the regression function ƒ.

Explanation

It is useful to consider the second definition to understand FVU. When trying to predict Y, the most naïve regression function that we can think of is the constant function predicting the mean of Y, i.e., . It follows that the MSE of this function equals the variance of Y; that is, SSerr = SStot, and SSreg = 0. In this case, no variation in Y can be accounted for, and the FVU then has its maximum value of 1.

More generally, the FVU will be 1 if the explanatory variables X tell us nothing about Y in the sense that the predicted values of Y do not covary with Y. But as prediction gets better and the MSE can be reduced, the FVU goes down. In the case of perfect prediction where for all i, the MSE is 0, SSerr = 0, SSreg = SStot, and the FVU is 0.

See also

References

  1. ^ Achen, C. H. (1990). "'What Does "Explained Variance" Explain?: Reply". Political Analysis. 2 (1): 173–184. doi:10.1093/pan/2.1.173.
This page was last edited on 30 August 2020, at 00:26
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.