To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Arc (projective geometry)

From Wikipedia, the free encyclopedia

The red points are a 4-arc in Fano plane, the projective plane of order 2.

A (simple) arc in finite projective geometry is a set of points which satisfies, in an intuitive way, a feature of curved figures in continuous geometries. Loosely speaking, they are sets of points that are far from "line-like" in a plane or far from "plane-like" in a three-dimensional space. In this finite setting it is typical to include the number of points in the set in the name, so these simple arcs are called k-arcs. An important generalization of k-arcs, also referred to as arcs in the literature, is the (k, d)-arcs.

YouTube Encyclopedic

  • 1/3
    Views:
    10 710
    8 067
    11 387
  • WildTrig40: The fundamental theorem of projective geometry
  • DiffGeom20: Geometric and algebraic aspects of space curves
  • Illuminating hyperbolic geometry

Transcription

k-arcs in a projective plane

In a finite projective plane π (not necessarily Desarguesian) a set A of k (k ≥ 3) points such that no three points of A are collinear (on a line) is called a k - arc. If the plane π has order q then kq + 2, however the maximum value of k can only be achieved if q is even.[1] In a plane of order q, a (q + 1)-arc is called an oval and, if q is even, a (q + 2)-arc is called a hyperoval.

Every conic in the Desarguesian projective plane PG(2,q), i.e., the set of zeros of an irreducible homogeneous quadratic equation, is an oval. A celebrated result of Beniamino Segre states that when q is odd, every (q + 1)-arc in PG(2,q) is a conic (Segre's theorem). This is one of the pioneering results in finite geometry.

If q is even and A is a (q + 1)-arc in π, then it can be shown via combinatorial arguments that there must exist a unique point in π (called the nucleus of A) such that the union of A and this point is a (q + 2)-arc. Thus, every oval can be uniquely extended to a hyperoval in a finite projective plane of even order.

A k-arc which can not be extended to a larger arc is called a complete arc. In the Desarguesian projective planes, PG(2,q), no q-arc is complete, so they may all be extended to ovals.[2]

k-arcs in a projective space

In the finite projective space PG(n, q) with n ≥ 3, a set A of kn + 1 points such that no n + 1 points lie in a common hyperplane is called a (spatial) k-arc. This definition generalizes the definition of a k-arc in a plane (where n = 2).

(k, d)-arcs in a projective plane

A (k, d)-arc (k, d > 1) in a finite projective plane π (not necessarily Desarguesian) is a set, A of k points of π such that each line intersects A in at most d points, and there is at least one line that does intersect A in d points. A (k, 2)-arc is a k-arc and may be referred to as simply an arc if the size is not a concern.

The number of points k of a (k, d)-arc A in a projective plane of order q is at most qd + dq. When equality occurs, one calls A a maximal arc.

Hyperovals are maximal arcs. Complete arcs need not be maximal arcs.

See also

Notes

  1. ^ Hirschfeld 1979, p. 164, Theorem 8.1.3
  2. ^ Dembowski 1968, p. 150, result 28

References

  • Dembowski, Peter (1968), Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Berlin, New York: Springer-Verlag, ISBN 3-540-61786-8, MR 0233275
  • Hirschfeld, J.W.P. (1979), Projective Geometries over Finite Fields, New York: Oxford University Press, ISBN 0-19-853526-0

External links

This page was last edited on 12 March 2024, at 23:18
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.