To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Acrosome reaction

From Wikipedia, the free encyclopedia

Acrosome reaction on a Sea Urchin cell
Acrosome reaction on a Sea Urchin cell

During fertilization, a sperm must first fuse with the plasma membrane and then penetrate the female egg in order to fertilize it. Fusing to the egg usually causes little problem, whereas penetrating through the egg's hard shell or extracellular matrix can present more of a problem to the sperm. Therefore, sperm cells go through a process known as the acrosome reaction which is the reaction that occurs in the acrosome of the sperm as it approaches the egg. The acrosome is a cap-like structure over the anterior half of the sperm's head.

As the sperm approaches the zona pellucida of the egg, which is necessary for initiating the acrosome reaction, the membrane surrounding the acrosome fuses with the plasma membrane of the sperm's head, exposing the contents of the acrosome. The contents include surface antigens necessary for binding to the egg's cell membrane, and numerous enzymes which are responsible for breaking through the egg's tough coating and allowing fertilization to occur.[1]

YouTube Encyclopedic

  • 1/3
    Views:
    218 768
    249 475
    34 711
  • General Embryology - Detailed Animation On Fertilization
  • Egg, sperm, and fertilization | Behavior | MCAT | Khan Academy
  • Developmental biology part 4 : sea urchin fertilization

Transcription

when ejaculation occurs during intercourse approximately 200 million sperm or spermatozoa are deposited into the vagina they swim through the cervix propelled by with whip-like motions of their tails or Flagela after which muscular contractions of the uterus direct them to the uterine tubes this process usually takes between 30 minutes and two hours only around 200 spermatozoa will reach the secondary oocyte in the uterine tube and of these only one will fertilize it fertilization cannot occur until two processes have taken place capacitation and the acrosomal reaction these can take several hours capacitation is not fully understood but secretions from the uterus wall and uterine tube destabilize the plasma membrane surrounding the head the spermatozoa or acrosome resulting in the membrane becoming more fluid which helps to prepare the spermatozoa for the events a fertilization the spermatozoa become hyperactive their flagella beat more frequently and their heads move laterally the capacitated spermatozoa moved through the corona radiata a dense layer of granulosa cells surrounding the oocyte and come into contact with the zona pellucida the zona pellucida expresses specific receptor proteins called ZP3 which bind to proteins expressed in the heads of the spermatozoa the binding ZP3 triggers the acrosome reaction during which the enzymatic contents of the acrosome are released these enzymes help to digest a path through the zona pellucida allowing the spermatozoa to enter the perivitelline space and reach the plasma membrane of the secondary oocyte with which it fuses to ensure that only one spermatozoa and penetrates the zona pellucida infuses with the oocyte membrane fusion of the spermatozoon and oocyte membranes activates a fast and a slow block to polyspermy during fast blocked polyspermy after fusion the oocyte membrane depolarizes preventing other spermatozoa from fusing with it slow block to polyspermy is also stimulated by this depolarization during slow block to polyspermy a wave of intracellular calcium is released causing small cortical granules beneath the oocyte membrane to release their contents renderings ZP3 inactive and making the zona pellucida impermeable upon the spermatozoon entering the oocyte undergoes meiosis II and further develops into the female pro nucleus during this time the sperm develops into the male pro nucleus and the two Pro nuclei fuse to form a single diploid nucleus or zygote

Contents

Variations among species

There are considerable species variations in the morphology and consequences of the acrosome reaction. In several species the trigger for the acrosome reaction has been identified in a layer that surrounds the egg.

Echinoderms

In some lower animal species a protuberance (the acrosomal process) forms at the apex of the sperm head, supported by a core of actin microfilaments. The membrane at the tip of the acrosomal process fuses with the egg's plasma membrane.

In some echinoderms, including starfish and sea urchins, a major portion of the exposed acrosomal content contains a protein that temporarily holds the sperm on the egg's surface.

Mammals

In mammals the acrosome reaction releases hyaluronidase and acrosin; their role in fertilization is not yet clear. The acrosomal reaction does not begin until the sperm comes into contact with the oocyte's zona pellucida. Upon coming into contact with the zona pellucida, the acrosomal enzymes begin to dissolve and the actin filament comes into contact with the zona pellucida. Once the two meet, a calcium influx occurs, causing a signaling cascade(need references). The cortical granules inside the oocyte then fuse to the outer membrane and a transient fast block reaction occurs.

It also alters a patch of pre-existing sperm plasma membrane so that it can fuse with the egg plasma membrane(need references).

A sperm penetration assay includes an acrosome reaction test that assesses how well a sperm is able to perform during the fertilization process. Sperm that are unable to properly go through the acrosome reaction will not be able to fertilize an egg. However, this problem only occurs in about 5% of men that have the test done. This test is rather expensive and provides limited information on a man's fertility.[2]

In other cases, such as in the wood mouse Apodemus sylvaticus, premature acrosome reactions have been found to cause increased motility in aggregates of spermatozoa promoting fertilization.[3]

The process

The acrosomal reaction normally takes place in the ampulla of the fallopian tube (site of fertilization) when the sperm penetrates the secondary oocyte. A few events precede the actual acrosome reaction. The sperm cell acquires a "hyperactive motility pattern" by which its flagellum produces vigorous whip-like movements that propel the sperm through the cervical canal and uterine cavity, until it reaches the isthmus of the fallopian tube. The sperm approaches the ovum in the ampulla of the fallopian tube with the help of various mechanisms, including chemotaxis. Glycoproteins on the outer surface of the sperm then bind with glycoproteins on the zona pellucida of the ovum.

Sperm that did not initiate the acrosome reaction prior to reaching to the zona pellucida are unable to penetrate the zona pellucida. Since the acrosome reaction has already occurred, sperm are then able to penetrate the zona pellucida due to mechanical action of the tail, not because of the acrosome reaction itself.[4]

The first stage is the penetration of corona radiata, by releasing hyaluronidase from the acrosome to digest cumulus cells surrounding the oocyte and exposing acrosin attached to the inner membrane of the sperm. The cumulus cells are embedded in a gel-like substance made primarily of hyaluronic acid, and developed in the ovary with the egg and support it as it grows. It is necessary for the acrosome reaction to occur before the sperm cell reaches the zona pellucida.[4]

Acrosin digests the zona pellucida and membrane of the oocyte. Part of the sperm's cell membrane then fuses with the egg cell's membrane, and the contents of the head sink into the egg. In the mouse it has been demonstrated that ZP3, one of the proteins that make up the zona pellucida, binds to a partner molecule (to the β1,4-galactosyl transferase receptors) on the sperm. This lock-and-key type mechanism is species-specific and prevents the sperm and egg of different species from fusing. The zona pellucida also releases Ca granules to prevent additional sperm from binding. There is some evidence that this binding is what triggers the acrosome to release the enzymes that allow the sperm to fuse with the egg. It is likely that a similar mechanism occurs in other mammals, but the diversity of zona proteins across species means that the relevant protein and receptor may differ.

Upon penetration, if all is occurring normally, the process of egg-activation occurs and the oocyte is said to have become activated. This is thought to be induced by a specific protein phospholipase c zeta. It undergoes its secondary meiotic division, and the two haploid nuclei (paternal and maternal) fuse to form a zygote. In order to prevent polyspermy and minimise the possibility of producing a triploid zygote, several changes to the egg's cell membranes renders them impenetrable shortly after the first sperm enters the egg.

The aforementioned process describes the physiologically relevant events. One should however bear in mind that a certain percentage of sperm cells will undergo a spontaneous acrosome reaction without the presence of the ovum. Those cells are not able to fertilise the egg, even if they do reach it later. Other cells will spontaneously shed their acrosome during the process of apoptosis/necrosis.

In in vitro fertilization

When using intracytoplasmic sperm injection (ICSI) for IVF, the implantation rate is higher in oocytes injected with spermatozoa that have undergone acrosome reaction (~40%) vs. those injected with nonreacted spermatozoa (~10%). The implantation rate is ~25% in when injected with both reacted and nonreacted spermatozoa. The delivery rate per cycle follows the same trend.[5]

The acrosome reaction can be stimulated in vitro by substances a sperm cell may encounter naturally such as progesterone or follicular fluid, as well as the more commonly used calcium ionophore A23187.

Assessment

Birefringence microscopy,[5] flow cytometry[6] or fluorescence microscopy can be used for assessing the shedding of the acrosome or "acrosome reaction" of a sperm sample. Flow cytometry and fluorescence microscopy are usually done after staining with a fluoresceinated lectin such as FITC-PNA, FITC-PSA, FITC-ConA, or fluoresceinated antibody such as FITC-CD46.[7] The antibodies/lectins have a high specificity for different parts of the acrosomal region, and will only bind to a specific site (acrosomal content/ inner/outer membrane). If bound to a fluorescent molecule, regions where these probes have bound can be visualised. Sperm cells with artificially induced acrosome reactions may serve as positive controls.

For fluorescence microscopy a smear of washed sperm cells are made, airdried, permealized and then stained. Such a slide is then viewed under light of a wavelength that will cause the probe to fluoresce if it is bound to the acrosomal region. At least 200 cells are viewed in an arbitrary fashion and classified as either acrosome intact (fluorescing bright green) or acrosome reacted (no probe present, or only on the equatorial region). It is then expressed as a percentage of the counted cells.

For assessment with flow cytometry the washed cells are incubated with the chosen probe, (possibly washed again) and then sampled in a flow cytometer. After gating the cell population according to forward- and side-scatter the resulting data can be analysed (E.g. mean fluorescences compared). With this technique a probe for viability, like propidium iodide (PI) could also be included in order to exclude dead cells from the acrosome assessment, since many sperm cells will spontaneously lose their acrosome when they die.

See also

References

  1. ^ Swiss Virtual Campus. "Chapter 4, Fertilization". Human Embryology. universities of Fribourg, Lausanne and Bern. Retrieved 18 February 2017. 
  2. ^ "Your path to fertility: Acrosome Reaction". 2007. [unreliable medical source?]
  3. ^ Moore, Harry; Dvoráková, Katerina; Jenkins, Nicholas; Breed, William (2002). "Exceptional sperm cooperation in the wood mouse". Nature. 418 (6894): 174–7. doi:10.1038/nature00832. PMID 12110888. 
  4. ^ a b Inoue, N; Satouh, Y; Ikawa, M; Okabe, M; Yanagimachi, R (2011). "Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs". Proceedings of the National Academy of Sciences. 108 (50): 20008–11. Bibcode:2011PNAS..10820008I. doi:10.1073/pnas.1116965108. PMC 3250175Freely accessible. PMID 22084105. 
  5. ^ a b Gianaroli, Luca; Magli, M. Cristina; Ferraretti, Anna P; Crippa, Andor; Lappi, Michela; Capitani, Serena; Baccetti, Baccio (2010). "Birefringence characteristics in sperm heads allow for the selection of reacted spermatozoa for intracytoplasmic sperm injection". Fertility and Sterility. 93 (3): 807–13. doi:10.1016/j.fertnstert.2008.10.024. PMID 19064263. 
  6. ^ Miyazaki, R; Fukuda, M; Takeuchi, H; Itoh, S; Takada, M (2009). "Flow Cytometry to Evaluate Acrosome-Reacted Sperm". Archives of Andrology. 25 (3): 243–51. doi:10.3109/01485019008987613. PMID 2285347. 
  7. ^ Carver-Ward, J. A; Moran-Verbeek, I. M; Hollanders, J. M. G (1997). "Comparative flow cytometric analysis of the human sperm acrosome reaction using CD46 antibody and lectins". Journal of Assisted Reproduction and Genetics. 14 (2): 111–9. doi:10.1007/BF02765780. PMC 3454831Freely accessible. PMID 9048242. 

External links

This page was last edited on 10 June 2018, at 17:38
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.