To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

← 5039 5040 5041 →
Cardinalfive thousand forty
Ordinal5040th
(five thousand fortieth)
Factorization24 × 32 × 5 × 7
Divisors1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 48, 56, 60, 63, 70, 72, 80, 84, 90, 105, 112, 120, 126, 140, 144, 168, 180, 210, 240, 252, 280, 315, 336, 360, 420, 504, 560, 630, 720, 840, 1008, 1260, 1680, 2520, 5040
Greek numeral,ΕΜ´
Roman numeralVXL
Binary10011101100002
Ternary202202003
Senary352006
Octal116608
Duodecimal2B0012
Hexadecimal13B016

5040 (five thousand [and] forty) is the natural number following 5039 and preceding 5041.

It is a factorial (7!), a superior highly composite number, abundant number, colossally abundant number and the number of permutations of 4 items out of 10 choices (10 × 9 × 8 × 7 = 5040). It is also one less than a square, making (7, 71) a Brown number pair.

YouTube Encyclopedic

  • 1/1
    Views:
    541
  • Why 5040 is a cool number, or: Searching for "antiprimes" (Part 4)

Transcription

Philosophy

Plato mentions in his Laws that 5040 is a convenient number to use for dividing many things (including both the citizens and the land of a city-state or polis) into lesser parts, making it an ideal number for the number of citizens (heads of families) making up a polis.[1] He remarks that this number can be divided by all the (natural) numbers from 1 to 12 with the single exception of 11 (however, it is not the smallest number to have this property; 2520 is). He rectifies this "defect" by suggesting that two families could be subtracted from the citizen body to produce the number 5038, which is divisible by 11. Plato also took notice of the fact that 5040 can be divided by 12 twice over. Indeed, Plato's repeated insistence on the use of 5040 for various state purposes is so evident that Benjamin Jowett, in the introduction to his translation of Laws, wrote, "Plato, writing under Pythagorean influences, seems really to have supposed that the well-being of the city depended almost as much on the number 5040 as on justice and moderation."[2]

Jean-Pierre Kahane has suggested that Plato's use of the number 5040 marks the first appearance of the concept of a highly composite number, a number with more divisors than any smaller number.[3]

Number theoretical

If is the sum-of-divisors function and is the Euler–Mascheroni constant, then 5040 is the largest of 27 known numbers (sequence A067698 in the OEIS) for which this inequality holds:

.

This is somewhat unusual, since in the limit we have:

Guy Robin showed in 1984 that the inequality fails for all larger numbers if and only if the Riemann hypothesis is true.

Interesting notes

  • 5040 has exactly 60 divisors, counting itself and 1.
  • 5040 is the largest factorial (7! = 5040) that is a highly composite number. All factorials smaller than 8! = 40320 are highly composite.
  • 5040 is the sum of 42 consecutive primes (23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103 + 107 + 109 + 113 + 127 + 131 + 137 + 139 + 149 + 151 + 157 +163 + 167 + 173 + 179 + 181 + 191 + 193 + 197 + 199 + 211 + 223 + 227 + 229).
  • 5040 is the least common multiple of the first 10 multiples of 2 (2, 4, 6, 8, 10, 12, 14, 16, 18 and 20).

References

  1. ^ Pangle, Thomas L. (1988). The Laws of Plato. Chicago University Press. pp. 124–5. ISBN 9780226671109.
  2. ^ Laws, by Plato, translated By Benjamin Jowett, at Project Gutenberg; retrieved 7 July 2009.
  3. ^ Kahane, Jean-Pierre (February 2015), "Bernoulli convolutions and self-similar measures after Erdős: A personal hors d'oeuvre" (PDF), Notices of the American Mathematical Society, 62 (2): 136–140.

External links

This page was last edited on 11 April 2024, at 15:55
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.