To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

(574372) 2010 JO179

From Wikipedia, the free encyclopedia

(574372) 2010 JO179
Discovery[1][2]
Discovered byPan-STARRS 1
Discovery siteHaleakala Obs.
Discovery date10 May 2010
Designations
(574372) 2010 JO179
2010 JO179
TNO[3] · SDO[4][5] · 5:21 res.[6]
p-DP · distant[1]
Orbital characteristics[3]
Epoch 31 May 2020 (JD 2459000.5)
Uncertainty parameter 2
Observation arc69.54 yr (25,399 days)
Earliest precovery date4 February 1951 (POSS-I)[1]
Aphelion117.997 AU
Perihelion39.590 AU
78.793 AU
Eccentricity0.49755
699.43 yr (255,466 d)
35.211°
0° 0m 5.04s / day[3]
Inclination32.025°
147.350°
1951-Sep-13[7]
10.427°
Physical characteristics
Mean diameter
597 km[8]
735 km[4]
600–900 km[6]
30.6 h[6]
30.6324 h (best fit)[6]
0.07 ~ 0.21 (estimated)[6]
0.10 (assumed)[8]
0.09 (assumed)[4]
G–R = 0.88±0.21 (red)[6]
3.44±0.10 (R-band)[6]
4.0[3][1]
4.3 (Brown)[8]

(574372) 2010 JO179 (provisional designation 2010 JO179) is a large, high-order resonant trans-Neptunian object in the outermost regions of the Solar System, approximately 700 kilometers (430 miles) in diameter.[6] Long-term observations suggest that the object is in a meta-stable 5:21 resonance with Neptune.[6] Other sources classify it as a scattered disc object.[4][5] It is possibly large enough to be a dwarf planet.[6]

First observation and orbit

The libration of 2010 JO179's nominal orbit, in a frame co-rotating with Neptune (click image to view animation)

The Minor Planet Center credits the object's first official observation on 10 May 2010 to Pan-STARRS (F51) at Haleakala Observatory, Hawaii, United States.[1][2] The observations were made by Pan-STARRS' Outer Solar System Survey.[6] There are 4 February 1951 precovery images from the Palomar Observatory Sky Survey, extending the observation arc by approximately 60 years.[1] The precovery images are from the same year the object came to perihelion (closest approach to the Sun).

2010 JO179 orbits the Sun at a distance of 39.6–118 AU once every 699 years and 5 months (semi-major axis of 78.8 AU). Its orbit has a high eccentricity of 0.50 and an inclination of 32° with respect to the ecliptic.[3]

Numbering and naming

This minor planet was numbered by the Minor Planet Center on 10 August 2021, receiving the number (574372) in the minor planet catalog (M.P.C. 133504).[9] As of 2021, it has not been named.[1]

Physical characteristics

Photometry

Photometric observations of 2010 JO179 gave a monomodal lightcurve with slow rotation period of 30.6 hours, suggesting a rather spherical shape with significant albedo patchiness. An alternative period solution of a bimodal lightcurve is considered less likely. It would double the period and imply an ellipsoidal shape with an axis-ratio of at least 1.58.[6]

Diameter and albedo

The object's mean diameter has been estimated to measure 574 and 735 kilometers, with an assumed albedo of 0.09, by Michael Brown and the Johnston's Archive respectively,[4][8] while the discoverers estimate a diameter of 600–900 kilometers with an estimated albedo of 0.21 to 0.07.[6]

References

  1. ^ a b c d e f g "2010 JO179". Minor Planet Center. Retrieved 27 August 2020.
  2. ^ a b "MPEC 2017-S54 : 2010 JO179". Minor Planet Center. 18 September 2017. Retrieved 21 February 2018.
  3. ^ a b c d e "JPL Small-Body Database Browser: (2010 JO179)" (2020-08-19 last obs.). Jet Propulsion Laboratory. Retrieved 28 August 2020.
  4. ^ a b c d e Johnston, Wm. Robert (15 October 2017). "List of Known Trans-Neptunian Objects". Johnston's Archive. Retrieved 15 December 2017.
  5. ^ a b "List Of Centaurs and Scattered-Disk Objects". Minor Planet Center. Retrieved 15 December 2017.
  6. ^ a b c d e f g h i j k l m Holman, Matthew J.; Payne, Matthew J.; Fraser, Wesley; Lacerda, Pedro; Bannister, Michele T.; Lackner, Michael; et al. (2018). "A dwarf planet class object in the 21:5 resonance with Neptune". The Astrophysical Journal. 855 (1): L6. arXiv:1709.05427. Bibcode:2018ApJ...855L...6H. doi:10.3847/2041-8213/aaadb3. S2CID 55279330.
  7. ^ "Horizons Batch for 574372 (2010 JO179) on 1951-Sep-13" (Perihelion occurs when rdot flips from negative to positive). JPL Horizons. Retrieved 21 September 2021. (JPL#8/Soln.date: 2021-Aug-26)
  8. ^ a b c d Michael E. Brown. "How many dwarf planets are there in the outer solar system?". California Institute of Technology. Retrieved 15 December 2017.
  9. ^ "MPC/MPO/MPS Archive". Minor Planet Center. Retrieved 21 August 2021.

External links

This page was last edited on 18 January 2024, at 19:50
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.