Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Механика сплошных сред
Сплошная среда
См. также: Портал:Физика
Ячейки Бенара в гравитационном поле.

Ячейки Бенара или Рэлея — Бенара — возникновение упорядоченности в виде конвективных ячеек в форме цилиндрических валов или правильных шестигранных структур в слое вязкой жидкости с вертикальным градиентом температуры, то есть равномерно подогреваемой снизу.

Ячейками Бенара можно объяснить происхождение вулканических образований в форме пучка вертикальных колонн — такими являются памятники природы «Девилс-Тауэр» (США) и «Мостовая гигантов» (Северная Ирландия).

Управляющим параметром самоорганизации служит градиент температуры. Вследствие подогрева в первоначально однородном слое жидкости начинается диффузия из-за возникшей неоднородности плотности. При преодолении некоторого критического значения градиента, диффузия не успевает привести к однородному распределению температуры по объёму. Возникают цилиндрические валы, вращающиеся навстречу друг другу (как сцепленные шестерёнки)[1]. При увеличении градиента температуры возникает второй критический переход. Для ускорения диффузии каждый вал распадается на два вала меньшего размера. При дальнейшем увеличении управляющего параметра валы дробятся и в пределе возникает турбулентный хаос, что отчетливо видно на бифуркационной диаграмме или дереве Фейгенбаума.

В тонком слое при подогреве снизу образуются ячейки правильной гексагональной формы, внутри которых жидкость поднимается по центру и опускается по граням ячейки[2]. Такая постановка эксперимента исторически была первой, однако здесь на самом деле наблюдается конвекция Марангони, возникающая за счёт действия сил поверхностного натяжения и зависимости их от температуры жидкости.

Аналитическое решение задачи (задача Рэлея)

Важным в задаче о конвекции в плоском слое является тот факт, что для записи её в приближении Буссинеска возможно получить точное аналитическое решение уравнений гидродинамики. Правда, простое точное решение удаётся найти лишь при абстрактной постановке с двумя свободными недеформируемыми границами слоя (как сверху, так и снизу), более реалистичные варианты таких решений не имеют (но для них хорошо работают приближённые аналитические методы, например метод Галёркина).

Приведём здесь решение задачи[3][4]. Примем, что ось z направлена вверх, перпендикулярно слою, оси x и y параллельны границе. Начало координат удобно выбрать на нижней границе слоя. Исходные уравнения конвекции:

Безразмерная форма уравнений конвекции для малых возмущений равновесия, в предположении экспоненциального роста возмущений во времени (т. н. «Нормальные» возмущения) — :

где  — единичный вектор оси z,  — соответственно число Прандтля и число Рэлея,  — инкремент (скорость роста) возмущений. После обезразмеривания переменная z изменяется от 0 до 1. Т. н. «Нормальные» возмущения являются частными решениями линейной системы дифференциальных уравнений, и поэтому находят широкое применение при исследовании задач в самых различных областях.

Постановка граничных условий производится в предположении, что обе границы недеформируемые, но свободные — при этом отсутствуют касательные напряжения в жидкости. Граничные условия:

, — недеформируемость границ.

, — отсутствие касательных напряжений. Так как считаем, что работаем с жидкостью, для которой справедливо уравнение Навье — Стокса, то можем явно записать вид тензора вязких напряжений и получить граничные условия для компонент скорости.

 — закон Навье,

Принимая обозначения для компонент скорости: , перепишем граничное условие для касательных напряжений в терминах скорости:

.

Для возмущений температуры на границе принимается нулевое значение. В итоге, система граничных условий задачи такова:

Теперь, предполагая возмущения нормальными по пространству — (здесь  — волновой вектор возмущения, параллельный плоскости ) и заменяя операторы дифференцирования — , можем переписать систему уравнений конвекции в виде системы ОДУ:

Взяв двойной ротор от первого уравнения и спроектировав его на ось z, получим окончательную систему уравнений для возмущений:

Исходя из граничных условий, а также из того, что все производные в системе чётного порядка, удобно представить решение в виде тригонометрических функций:

где n — целое число. Решение в виде синусов удовлетворяет сразу всем граничным условиям.

Типичная нейтральная кривая для задачи конвекции в плоском слое

Далее, обозначая , и подставляя предполагаемый вид решения в уравнения, получим линейную однородную алгебраическую систему для a, b. Из её определителя можно выразить зависимость :

Полагая здесь  — граница монотонной устойчивости, невозрастание нормальных возмущений — получим формулу для определения критического числа Рэлея n-ой моды возмущений:

Наименьшее число Рэлея получится при . Минимум зависимости, как несложно убедиться, приходится на , а само минимальное число Рэлея равно . В соответствии с критическим волновым числом в слое возникают структуры в виде валов ширины (в безразмерных единицах).

Для задач с другими вариантами границ критическое число Рэлея оказывается выше. К примеру, для слоя с двумя твёрдыми границами оно равно 1708[5], для слоя с твёрдой верхней и свободной нижней границами — 1156, меняются и критические волновые числа. Однако качественно картина конвективных валов не изменяется.

См. также

Примечания

  1. Ван-Дайк М. Альбом течений жидкости и газа, М.: Мир, 1986 — c. 84, рис. 139—140
  2. Ван-Дайк М. Альбом течений жидкости и газа, М.: Мир, 1986 — c. 85, рис. 140—141
  3. Гершуни Г. З., Жуховицкий Е. М. Конвективная устойчивость несжимаемой жидкости. // М.: Наука, 1972 — § 5
  4. Фрик П. Г. Турбулентность: методы и подходы. Курс лекций, ч.1 // Пермь: Пермский гос. техн. ун-т., 1998 — с. 33-37
  5. Гершуни Г. З., Жуховицкий Е. М., там же, § 6

Литература

  • L.E.Scriven & C.V.Sternling «Эффекты Марангони»

Ссылки

Эта страница в последний раз была отредактирована 16 апреля 2020 в 17:12.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).