Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Механика сплошных сред
Сплошная среда
См. также: Портал:Физика

Уравнение диффузии представляет собой частный вид дифференциального уравнения в частных производных. Бывает нестационарным и стационарным.

В смысле интерпретации при решении уравнения диффузии речь идет о нахождении зависимости концентрации вещества (или иных объектов) от пространственных координат и времени, причем задан коэффициент (в общем случае также зависящий от пространственных координат и времени), характеризующий проницаемость среды для диффузии. При решении уравнения теплопроводности речь идет о нахождении зависимости температуры среды от пространственных координат и времени, причем задана теплоёмкость и теплопроводность среды (также в общем случае неоднородной).

Физически в том и другом случае предполагается отсутствие или пренебрежимость макроскопических потоков вещества. Таковы физические рамки применимости этих уравнений. Также, представляя непрерывный предел указанных задач (то есть не более, чем некоторое приближение), уравнение диффузии и теплопроводности в общем не описывают статистических флуктуаций и процессов, близких по масштабу к длине и времени свободного пробега, также весьма сильно отклоняясь от предполагаемого точного решения задачи в том, что касается корреляций на расстояниях, сравнимых (и больших) с расстояниями, проходимыми звуком (или свободными от сопротивления среды частицами при их характерных скоростях) в данной среде за рассматриваемое время.

Это в подавляющей части случаев сразу же означает и то, что уравнения диффузии и теплопроводности по области применимости далеки от тех областей, где становятся существенными квантовые эффекты или конечность скорости света, то есть в подавляющей части случаев не только по своему выводу, но и принципиально, ограничиваются областью классической ньютоновской физики.

  • В задачах диффузии или теплопроводности в жидкостях и газах, находящихся в движении, вместо уравнения диффузии применяется уравнение переноса, расширяющее уравнение диффузии на тот случай, когда пренебрежением макроскопическим движением недопустимо.
  • Ближайшим формальным, а во многом и содержательным, аналогом уравнения диффузии является уравнение Шрёдингера, отличающееся от уравнения диффузии множителем мнимая единица перед производной по времени. Многие теоремы о решении уравнения Шрёдингера и даже некоторые виды формальной записи его решений прямо аналогичны соответствующим теоремам об уравнении диффузии и его решениях, однако качественно их решения различаются очень сильно.


Общий вид

Уравнение обычно записывается так:

где φ(r, t) — плотность диффундирующего вещества в точке r и во время t и D(φ, r) — обобщённый коэффициент диффузии для плотности φ в точке r;  — оператор набла. Если коэффициент диффузии зависит от плотности — уравнение нелинейно, в противном случае — линейно.

Если D — симметричный положительно определённый оператор, уравнение описывает анизотропную диффузию:

Если D постоянное, то уравнение сводится к линейному дифференциальному уравнению:

также называемому уравнением теплопроводности.

История происхождения

Дифференциальное уравнение в частных производных было первоначально выведено Адольфом Фиком в 1855 году.[1]

Нестационарное уравнение

Нестационарное уравнение диффузии классифицируется как параболическое дифференциальное уравнение. Оно описывает распространение растворяемого вещества вследствие диффузии или перераспределение температуры тела в результате теплопроводности.

Одномерный случай

В случае одномерного диффузионного процесса с коэффициентом диффузии (теплопроводности) уравнение имеет вид:

При постоянном приобретает вид:

где  — концентрация диффундирующего вещества, a  — функция, описывающая источники вещества (тепла).

Трёхмерный случай

В трёхмерном случае уравнение приобретает вид:

где  — оператор набла, а  — скалярное произведение. Оно также может быть записано как

а при постоянном приобретает вид:

где  — оператор Лапласа.

n-мерный случай

-мерный случай — прямое обобщение приведенного выше, только под оператором набла, градиентом и дивергенцией, а также под оператором Лапласа надо понимать -мерные версии соответствующих операторов:

Это касается и двумерного случая .

Мотивация

A.

Обычно уравнение диффузии возникает из эмпирического (или как-то теоретически полученного) уравнения, утверждающего пропорциональность потока вещества (или тепловой энергии) разности концентраций (температур) областей, разделённых тонким слоем вещества заданной проницаемости, характеризуемой коэффициентом диффузии (или теплопроводности):

(одномерный случай),
(для любой размерности),

в сочетании с уравнением непрерывности, выражающим сохранение вещества (или энергии):

(одномерный случай),
(для любой размерности),

с учетом в случае уравнения теплопроводности ещё теплоёмкости (температура = плотность энергия / удельная теплоемкость).

  • Здесь источник вещества (энергии) в правой части опущен, но он, конечно же, может быть легко туда помещён, если в задаче есть приток (отток) вещества (энергии).
  • Также предполагается, что на поток диффундирующего вещества (примеси) не действуют никакие внешние силы, в том числе сила тяжести (пассивная примесь).

B.

Кроме того, оно естественно возникает как непрерывный предел аналогичного разностного уравнения, возникающего в свою очередь при рассмотрении задачи о случайном блуждании на дискретной решётке (одномерной или -мерной). (Это простейшая модель; в более сложных моделях случайных блужданий уравнение диффузии также возникает в непрерывном пределе). Простейшей интерпретацией функции в этом случае служит количество (или концентрация) частиц в данной точке (или вблизи неё), причём каждая частица движется независимо от остальных без памяти (инерции) своего прошлого (в несколько более сложном случае — с ограниченной по времени памятью).

Решение

В одномерном случае фундаментальное решение однородного уравнения с постоянным — не зависящим от и  — (при начальном условии, выражаемом дельта-функцией и граничном условии ) есть

В этом случае можно интерпретировать как плотность вероятности того, что одна частица, находившаяся в начальный момент времени в исходном пункте, через время перейдёт в пункт с координатой . То же самое — с точностью до множителя, равного количеству диффундирующих частиц — относится к их концентрации, при условии отсутствия или пренебрежимости взаимодействия диффундирующих частиц между собой. Тогда (при таких начальных условиях) средний квадрат удаления диффундирующих частиц (или соответствующая характеристика распределения температуры) от начальной точки


В случае произвольного начального распределения общее решение уравнения диффузии представляется в интегральном виде как свёртка:

Физические замечания

Так как приближение, реализуемое уравнениями диффузии и теплопроводности, принципиально ограничивается областью низких скоростей и макроскопических масштабов (см. выше), то неудивительно, что их фундаментальное решение на больших расстояниях ведёт себя не слишком реалистично, формально допуская бесконечное распространение воздействия в пространстве за конечное время; надо при этом заметить, что величина этого воздействия так быстро убывает с расстоянием, что этот эффект как правило в принципе ненаблюдаем (например, речь идёт о концентрациях много меньше единицы).

Впрочем, если речь идёт о ситуациях, когда могут быть экспериментально измерены столь маленькие концентрации, и это для нас существенно, нужно пользоваться по меньшей мере не дифференциальным, а разностным уравнением диффузии, а лучше — и более подробными микроскопической физической и статистической моделями, чтобы получить более адекватное представление о реальности в этих случаях.

Стационарное уравнение

В случае, когда ставится задача по нахождению установившегося распределения плотности или температуры (например, в случае, когда распределение источников не зависит от времени), из нестационарного уравнения выбрасывают члены уравнения, связанные со временем. Тогда получается стационарное уравнение теплопроводности, относящееся к классу эллиптических уравнений. Его общий вид:

Постановка краевых задач

  • Задача с начальными условиями (задача Коши) о распределении температуры на бесконечной прямой

Если рассматривать процесс теплопроводности в очень длинном стержне, то в течение небольшого промежутка времени влияние температур на границах практически отсутствует, и температура на рассматриваемом участке зависит лишь от начального распределения температур.

Найти решение уравнения теплопроводности в области и , удовлетворяющее условию , где  — заданная функция.

  • Первая краевая задача для полубесконечного стержня

Если интересующий нас участок стержня находится вблизи одного конца и значительно удалён от другого, то мы приходим к краевой задаче, в которой учитывается влияние лишь одного из краевых условий.

Найти решение уравнения теплопроводности в области и , удовлетворяющее условиям

где и  — заданные функции.

  • Краевая задача без начальных условий

Если момент времени который нас интересует достаточно удалён от начального, то имеет смысл пренебречь начальными условиями, поскольку их влияние на процесс с течением времени ослабевает. Таким образом, мы приходим к задаче, в которой заданы краевые условия и отсутствуют начальные.

Найти решение уравнения теплопроводности в области и , удовлетворяющее условиям

где и  — заданные функции.

  • Краевые задачи для ограниченного стержня

Рассмотрим следующую краевую задачу:

 — уравнение теплопроводности.

Если , то такое уравнение называют однородным, в противном случае — неоднородным.

 — начальное условие в момент времени , температура в точке задается функцией .
 — краевые условия. Функции и задают значение температуры в граничных точках 0 и в любой момент времени .

В зависимости от рода краевых условий, задачи для уравнения теплопроводности можно разбить на три типа. Рассмотрим общий случай ().

Если , то такое условие называют условием первого рода, если  — второго рода, а если и отличны от нуля, то условием третьего рода. Отсюда получаем задачи для уравнения теплопроводности — первую, вторую и третью краевую.

Принцип максимума

Пусть функция в пространстве , удовлетворяет однородному уравнению теплопроводности , причем  — ограниченная область. Принцип максимума утверждает, что функция может принимать экстремальные значения либо в начальный момент времени, либо на границе области .

Примечания

  1. Fick A., Ueber Diffusion, Pogg. Ann. Phys. Chem.— 1855.— 170 (4. Reihe 94).— pp. 59-86.


Эта страница в последний раз была отредактирована 23 декабря 2022 в 09:11.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).