Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Ядерное горение кремния

Из Википедии — свободной энциклопедии

Внутренняя структура массивной звезды в конце жизни.
Ядерные процессы
Радиоактивный распад
Нуклеосинтез

Горе́ние кре́мния — последовательность термоядерных реакций, протекающая в недрах массивных звёзд (минимум 8—11 солнечных масс), в ходе которой происходит превращение ядер кремния в ядра более тяжёлых элементов. Для данного процесса необходимо наличие высокой температуры (2,7—3,5⋅109 K, что соответствует кинетической энергии 230—300 кэВ) и плотности (105106 г/см³). Стадия горения кремния следует за стадиями горения водорода, гелия, углерода, неона и кислорода; она является финальной стадией эволюции звезды за счёт термоядерных процессов. После её окончания в ядре звезды больше не остаётся доступных термоядерных источников энергии, поскольку в результате горения кремния образуются ядра группы железа, которые имеют максимальную энергию связи на один нуклон и более неспособны к термоядерным экзотермическим реакциям. Прекращение энерговыделения приводит к потере способности звёздного ядра противодействовать давлению внешних слоёв, к катастрофическому коллапсу звезды и вспышке сверхновой типа II.

Ядерные реакции

За счёт высокой температуры происходит частичная фотодезинтеграция ядер кремния в реакциях (γ, α), (γ, p), (γ, n). Образовавшиеся в результате альфа-частицы, протоны и нейтроны начинают реагировать с оставшимися ядрами кремния. В результате множества реакций образуются более тяжёлые элементы, в том числе элементы около железа. Примерами таких реакций, например, являются:

28Si + 4He32S + γ
32S + 4He36Ar + γ
36Ar + 4He ↔ 40Ca + γ
40Ca + 4He ↔ 44Ti + γ
44Ti + 4He ↔ 48Cr + γ
48Cr + 4He ↔ 52Fe + γ
52Fe + 4He ↔ 56Ni + γ

Прямая реакция типа «кремний+кремний»

28Si + 28Si → 56Ni + γ (Q ≈ 10,9 МэВ)

маловероятна из-за большого кулоновского барьера.

Горение кремния в звёздах

Горение кремния это конечная стадия термоядерного синтеза в ядрах звёзд, самая быстрая фаза звездной эволюции. Для массивных звезд (более 25 солнечных масс) длительность горения кремния оценивается всего в 1 день. Горение более тяжёлых элементов не происходит, поскольку при таких реакциях энергия уже не выделяется, а поглощается.

Такая малая продолжительность ядерных реакций с тяжёлыми элементами объясняется не только уменьшением энергетического выхода в пересчёте на нуклон. Сказывается общая большая светимость массивных звёзд, в результате чего излучаемая энергия на единицу массы на порядки выше, чем у карликов типа Солнца. Однако основным фактором сокращения времени ядерных реакций с участием тяжёлых элементов является так называемое нейтринное охлаждение: при температурах более миллиарда кельвинов столкновение гамма-квантов с ядрами может порождать пары нейтрино-антинейтрино. С дальнейшим ростом температур доля энергии, уносимая нейтринными парами всё больше растёт, причём для нейтрино ядро звезды прозрачно (они беспрепятственно уносят энергию), ядро всё больше сжимается, и последние происходящие ядерные реакции могут происходить в форме взрыва[1].

Примечания

  1. Киппенхан, Р. 100 миллиардов Солнц: рождение, жизнь, и смерть звёзд. — Москва: Мир, 1988.

Ссылки

  • Звёздный нуклеосинтез — источник происхождения химических элементов — Научная сеть
  • Горение кремния — Б.C. Ишханов, И. М. Капитонов, И. А. Тутынь
  • Arnett, W. D., Advanced evolution of massive stars. VII — Silicon burning / Astrophysical Journal Supplement Series, vol. 35, Oct. 1977, p. 145—159 (англ.)
  • Principles of Stellar Evolution and Nucleosynthesis, 1968 — Figure 7.7, page 533 (англ.)
  • Hix, W. Raphael; Thielemann, Friedrich-Karl (1 April 1996). "Silicon Burning. I. Neutronization and the Physics of Quasi-Equilibrium". The Astrophysical Journal. 460: 869. arXiv:astro-ph/9511088v1. Bibcode:1996ApJ...460..869H. doi:10.1086/177016. Дата обращения: 29 июля 2015.
Эта страница в последний раз была отредактирована 25 декабря 2023 в 18:59.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).