Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Внутренняя конверсия

Из Википедии — свободной энциклопедии

Ядерная физика
Атомное ядро · Радиоактивный распад · Ядерная реакция · Термоядерная реакция
См. также: Портал:Физика
Ядерные процессы
Радиоактивный распад
Нуклеосинтез

Внутренняя конве́рсия (от лат. conversio — обращение, вращение, превращение, изменение) — физическое явление, заключающееся в том, что переход атомного ядра из возбуждённого изомерного состояния в состояние с меньшей энергией (или основное состояние) осуществляется путём передачи высвобождаемой при переходе энергии непосредственно одному из электронов этого атома[1][2][3]. Таким образом, в результате этого явления испускается не γ-квант, а так называемый конверсионный электрон, кинетическая энергия которого равна разности между энергией ядерного изомерного перехода и энергией связи электрона на той оболочке, с которой он был испущен (в зависимости от этого различают K-, L-, M- и др. электроны). Кроме того, небольшая доля энергии (сотые или тысячные доли процента) передаётся самому атому в результате эффекта отдачи[1].

Стоит подчеркнуть, что испускаемый конверсионный электрон не является бета-частицей, так как в результате внутренней конверсии не происходит изменения заряда атомного ядра. Спектр испущенных конверсионных электронов всегда является линейчатым ввиду их моноэнергетичности из-за привязки к конкретной электронной оболочке, в то время как спектр электронов бета-распада является непрерывным (из-за того, что при бета-распаде энергия распределяется между электроном и электронным антинейтрино).

История открытия явления

Впервые ряд дискретных линий в спектре распределения скоростей электронов, испускаемых при бета-распаде, был обнаружен в 1909—1910 гг. Байером, Ганом и Мейтнер, направившими бета-электроны (после разделения в магнитном поле) на фотопластинку. Однако они не сумели обнаружить непрерывного фона электронов бета-распада. Наличие фона смог зарегистрировать в 1914 году Джеймс Чедвик[4].

Практически одновременно с этим Резерфорд, Робинсон (англ. H. Robinson) и Раулинсон (англ. W. T. Rowlinson) обнаружили, что гамма-лучи, испускаемые при радиоактивном распаде, способны вырывать из металлических пластинок электроны, обладающие дискретными скоростями. Поэтому Резерфорд высказал предположение о том, что дискретные линии в спектре бета-лучей принадлежат вторичным электронам, вырванным гамма-лучами, испускаемыми ядром, из электронных оболочек атома. Впоследствии это явление получило название внутренней конверсии. Таким образом, непосредственно электронами бета-распада являются электроны непрерывного бета-спектра, что впоследствии было подтверждено работами Эллиса (англ. C. D. Ellis) и Вустера (англ. W. A. Wooster)[4].

Механизм явления

Передача энергии электрону одной из электронных оболочек возможна благодаря тому, что волновые функции ядра и нижних атомных оболочек перекрываются (что означает конечную вероятность нахождения электрона s-орбитали в ядре). Процесс передачи энергии можно представить в виде испускания ядром гамма-кванта (как правило, виртуального) и поглощения этого кванта электроном атомной оболочки, в результате чего электрон покидает атом.

Присутствие в этом механизме виртуального гамма-кванта позволяет объяснить возможность переходов между ядерными состояниями со спинами, равными нулю. В таких переходах испускание гамма-квантов абсолютно запрещено и переход ядра происходит либо путём внутренней конверсии (при этом передача энергии электрону осуществляется именно виртуальным гамма-квантом), либо излучением двух гамма-квантов с суммарной энергией, равной энергии ядерного перехода (двухфотонным переходом)[1].

Наибольшую вероятность имеет процесс внутренней конверсии электронов K-оболочки (орбиталь 1s). После испускания электрона в результате внутренней конверсии образовавшаяся вакансия заполняется электроном с более высокой атомной орбитали, в результате чего наблюдается испускание характеристического рентгеновского излучения и/или оже-электронов.

Коэффициент внутренней конверсии

Вероятность внутренней конверсии по отношению к вероятности перехода с испусканием гамма-кванта характеризуется полным коэффициентом внутренней конверсии, который определяется в виде отношения интенсивности потока конверсионных электронов к интенсивности гамма-излучения для данного ядерного перехода. Для определения парциальных коэффициентов внутренней конверсии для электронов K-, L-, M-…оболочек в отношении используют интенсивности потока конверсионных электронов данной электронной оболочки[2][3]. Таким образом, полный коэффициент внутренней конверсии равен сумме парциальных:

Расчёты коэффициента внутренней конверсии проводятся методами квантовой теории поля с учётом экранирования заряда ядра электронами других оболочек атома и конечных размеров ядра. Коэффициент внутренней конверсии изменяется в широких пределах (103—10−4) в зависимости от энергии и мультипольности ядерного перехода, а также от заряда ядра и от оболочки, на которой происходит внутренняя конверсия. Он тем больше, чем меньше энергия перехода, чем выше его мультипольность и чем больше заряд ядра (в первом приближении ~Z3)[1][2]. В слабой степени (0,1—1 %) коэффициент внутренней конверсии также зависит и от структуры ядра[1].

Сравнение экспериментально измеренных и теоретически рассчитанных коэффициентов внутренней конверсии является одним из основных методов определения мультипольностей переходов и квантовых характеристик (спинов и чётностей) ядерных состояний[2].

Парная конверсия

Если энергия ядерного перехода превышает удвоенную энергию покоя электрона (E > 2mec2 = 1,022 МэВ), тогда может происходить образование электрон-позитронных пар (так называемая парная конверсия), вероятность которой в отличие от внутренней конверсии на электронах растёт с ростом энергии ядерного перехода и падает с увеличением его мультипольности. В этом случае спектры кинетической энергии образующихся электронов и позитронов являются непрерывными, однако суммарная кинетическая энергия электрона и позитрона фиксирована и равна разности энергии ядерного перехода и энергии, затраченной на рождение электрон-позитронной пары[1].

Сходные процессы

Не следует смешивать понятия внутренней конверсии и фотоэлектрического эффекта, в результате которого также происходит испускание электронов веществом под воздействием электромагнитного излучения. Их различие состоит в том, что при внутренней конверсии гамма-квант, передающий энергию электрону, является виртуальным и испускается ядром того атома, в оболочке которого находится электрон.

Образование оже-электронов, которые могут появляться в том числе и после внутренней конверсии, происходит по схожему с внутренней конверсией механизму, когда избыточная энергия (появившаяся в результате перехода электрона с более высокого электронного уровня на нижележащий для заполнения вакансии) передается одному из электронов (см. эффект Оже). Различие между излучением оже-электронов и внутренней конверсией состоит в том, что в первом случае энергия, уносимая электроном, передаётся ему от возбуждённой электронной оболочки атома, а во втором случае — от возбуждённого ядра.

См. также

Примечания

  1. 1 2 3 4 5 6 Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2. Добротность — Магнитооптика. — С. 436. — 703 с. — ISBN 5-85270-061-4.
  2. 1 2 3 4 [bse.sci-lib.com/article063694.html «Конверсия внутренняя» в БСЭ]
  3. 1 2 «Внутренняя конверсия» на сайте НИИЯФ МГУ. Дата обращения: 29 ноября 2009. Архивировано 3 ноября 2010 года.
  4. 1 2 Бронштейн М. П. Внутренняя конверсия гамма-лучей. // УФН. — 1933. — № 7. Архивировано 27 сентября 2013 года.

Литература

  • Грошев Л. В., Шапиро И. С. Спектроскопия атомных ядер. — М., 1952.
  • Гамма-лучи / под ред. Л. А. Слив. — М. — Л., 1961.
  • Альфа-, бета- и гамма-спектроскопия / под ред. К. Зигбана. — М., 1969.
Эта страница в последний раз была отредактирована 1 марта 2023 в 13:08.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).