Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Тензорное произведение

Из Википедии — свободной энциклопедии

Тензорное произведение — операция над векторными пространствами, а также над элементами (векторами, матрицами, операторами, тензорами и т. д.) перемножаемых пространств.

Тензорное произведение линейных пространств и есть линейное пространство, обозначаемое . Для элементов и их тензорное произведение лежит в пространстве .

Обозначение тензорного произведения произошло по аналогии с обозначением для декартова произведения множеств.

Тензорное произведение линейных (векторных) пространств

Конечномерные пространства

Пусть и  — конечномерные векторные пространства над полем ,  — базис в ,  — базис в . Тензорным произведением пространств и будем называть векторное пространство, порождённое элементами , называемыми тензорными произведениями базисных векторов. Тензорное произведение произвольных векторов можно определить, полагая операцию билинейной:

При этом тензорное произведение произвольных векторов и выражается как линейная комбинация базисных векторов . Элементы в , представимые в виде , называются разложимыми.

Хотя тензорное произведение пространств определяется через выбор базисов, его геометрические свойства не зависят от этого выбора.

Определение с помощью универсального свойства

Тензорное произведение — это в некотором смысле наиболее общее пространство, в которое можно билинейно отобразить исходные пространства. А именно, для любого другого пространства и билинейного отображения существует единственное линейное отображение такое, что

где обозначает композицию функций.

В частности, отсюда следует, что тензорное произведение не зависит от выбора базисов в и , так как все удовлетворяющие универсальному свойству пространства оказываются канонически изоморфны.

Таким образом, задание произвольного билинейного отображения эквивалентно заданию линейного отображения : пространства и являются канонически изоморфными.

Произведение более чем двух пространств

Приведенное универсальное свойство может быть продолжено на произведения более чем двух пространств. Например, пусть , , и  — три векторных пространства. Тензорное произведение вместе с трилинейным отображением из прямого произведения

имеет такой вид, что любое трилинейное отображение из прямого произведения в векторное пространство

единственным образом пропускается через тензорное произведение:

где  — линейное отображение. Тензорное произведение характеризуется этим свойством однозначно, с точностью до изоморфизма. Результат приведенной конструкции совпадает с повторением тензорного произведения двух пространств. Например, если , и  — три векторных пространства, то существует (естественный) изоморфизм

В общем случае тензорное произведение произвольного индексированного семейства множеств , определяется как универсальный объект для полилинейных отображений из прямого произведения .

Пусть  — произвольное натуральное число. Тогда тензорной степенью пространства называется тензорное произведение копий :

Функториальность

Тензорное произведение действует также на линейных отображениях. Пусть ,  — линейные операторы. Тензорное произведение операторов определяется по правилу

После этого определения тензорное произведение становится бифунктором из категории векторных пространств в себя, ковариантным по обоим аргументам.[1]

Если матрицы операторов A и B при некотором выборе базисов имеют вид

то матрица их тензорного произведения запишется в базисе, образованном тензорным произведением базисов, в виде блочной матрицы

Соответствующая операция над матрицами называется кронекеровским произведением, по имени Леопольда Кронекера.

Частные случаи

Тензорное произведение двух векторов

(Матричное) умножение вектора-столбца справа на вектор-строку описывет их тензорное произведение:

Свойства

Следующие алгебраические свойства основаны на каноническом изоморфизме:

  • Ассоциативность
  • Формально говоря, тензорное произведение не коммутативно, но существует естественный изоморфизм
  • Линейность
 — внешняя сумма линейных пространств.

Тензорное произведение модулей

Пусть  — модули над некоторым коммутативным кольцом . Тензорным произведением модулей называется модуль над , данный вместе с полилинейным отображением и обладающий свойством универсальности, то есть такой, что для всякого модуля над и любого полилинейного отображения существует единственный гомоморфизм модулей такой, что диаграмма

коммутативна. Тензорное произведение обозначается . Из универсальности тензорного произведения следует, что оно определено однозначно с точностью до изоморфизма.

Для доказательства существования тензорного произведения любых модулей над коммутативным кольцом построим свободный модуль , образующими которого будут n-ки элементов модулей где . Пусть  — подмодуль , порождаемый следующими элементами:

Тензорное произведение определяется как фактормодуль , класс обозначается , и называется тензорным произведением элементов , a определяется как соответствующее индуцированное отображение.

Из 1) и 2) следует что отображение полилинейно. Докажем, что для любого модуля и любого полилинейного отображения существует единственный гомоморфизм модулей , такой, что .

В самом деле, так как свободен, то существует единственное отображение , делающее диаграмму

коммутативной, а в силу того, что полилинейно, то на , отсюда, переходя к индуцированному отображению, получаем, что , будет тем самым единственным гомоморфизмом, существование которого и требовалось доказать.

Элементы , представимые в виде , называются разложимыми.

Если  — изоморфизмы модулей, то индуцированный гомоморфизм, соответствующий билинейному отображению

существующий по свойству универсальности, называется тензорным произведением гомоморфизмов .

Особенно простой случай получается в случае свободных модулей. Пусть  — базис модуля . Построим свободный модуль над нашим кольцом, имеющий в качестве базиса элементы, соответствующие n-кам , определив отображение и распространив его на по линейности. Тогда является тензорным произведением, где является тензорным произведением элементов . Если число модулей и все их базисы конечны, то

.

Литература

  • Винберг Э. Б. Курс алгебры. — 3-е изд. — М.: Факториал Пресс, 2002. — 544 с. — 3000 экз. — ISBN 5-88688-060-7.
  • Ленг С. Алгебра. — М.: Мир, 1967.
  • Ван дер Варден Б. Л. Алгебра. — М.: Наука, 1976. — 648 с.

Примечания

  1. Hazewinkel, Michiel; Gubareni, Nadezhda Mikhaĭlovna; Gubareni, Nadiya; Kirichenko, Vladimir V. Algebras, rings and modules (неопр.). — Springer, 2004. — С. 100. — ISBN 978-1-4020-2690-4.

См. также

Эта страница в последний раз была отредактирована 12 февраля 2024 в 21:38.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).