Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Гармонические сферические функции

Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических явлений в пространственных областях, ограниченных сферическими поверхностями и при решении физических задач, обладающих сферической симметрией. Сферические функции имеют большое значение в теории дифференциальных уравнений в частных производных и теоретической физике, в частности в задачах расчёта электронных орбиталей в атоме, гравитационного поля геоида, магнитного поля планет и интенсивности реликтового излучения.

Определение

Вещественные сферические функции Ylm, l=0…4 (сверху вниз), m=0…4 (слева направо). Функции отрицательного порядка Yl-m повёрнуты вокруг оси Z на 90/m градусов относительно функций положительного порядка.

Сферические функции являются собственными функциями оператора Лапласа в сферической системе координат (обозначение ). Они образуют ортонормированную систему в пространстве функций на сфере в трёхмерном пространстве:

,

где * обозначает комплексное сопряжение,  — символ Кронекера.

Сферические функции имеют вид

,

где функции являются решениями уравнения

и имеют вид

Здесь  — присоединённые многочлены Лежандра, а  — факториал.

Присоединенные многочлены Лежандра с отрицательным здесь вводятся как

Решение уравнения Лапласа в сферических координатах есть так называемая шаровая функция, получаемая умножением сферической функции на решение радиального уравнения.

Вещественная форма

Вещественные сферические функции до шестого порядка

Для сферических функций форма зависимости от угла  — комплексная экспонента. Используя формулу Эйлера, можно ввести вещественные сферические функции. Иногда их удобнее использовать в связи с тем, что они могут быть наглядно показаны на иллюстрациях, в отличие от комплексных. Однако значимое удобство комплексных функций (утрачиваемое при переходе к вещественным) состоит в независимости квадрата их модуля от угла .

Обратное преобразование:

Иногда вещественные сферические функции называют зональными, тессеральными и секториальными[1]. Функции с m > 0 зависят от угла как косинус, а с m < 0 — как синус.

Повороты

Поворот вещественной сферической функции с m=0 и l=3. Коэффициенты не равны D-матрицам Вигнера, поскольку показаны вещественные функции, но могут быть получены при переразложении по комплексным функциям

Рассмотрим поворот системы координат , на Углы Эйлера который преобрaзует единичный вектор в вектор . При этом углы вектора в новой системе координат выражаются через углы в старой системе координат следующим образом

В новой системе координат сферическая функция с индексами и будет представима в виде линейной комбинации всех функций с тем же номером и различными . Коэффициентами в линейной комбинации являются комплексно- сопряженные D-матрицы Вигнера[2]

Сферические функции с номером образуют базис неприводимого представления размерности группы вращений SO(3).

Разложение плоской волны по сферическим функциям

Комплексная экспонента может быть представлена в виде разложения по сферическим функциям

Здесь  — сферическая функция Бесселя

Разложение произведений сферических функций

Разложения  Клебша-Гордана  для произведений двух сферических функций выглядят следующим образом [3]:

См. также

Примечания

  1. Тихонов А. Н., Самарский А. А. Уравнения математической физики Архивная копия от 27 декабря 2019 на Wayback Machine
  2. M. A. Morrison, G. A. Parker. A guide to rotations in quantum mechanics Архивная копия от 1 октября 2019 на Wayback Machine. — Australian Journal of Physics, Vol. 40, pp. 465, 1987
  3. Варшалович Д. А., Москалёв А. Н., Херсонский В. К. Квантовая теория углового момента. Архивная копия от 11 ноября 2007 на Wayback Machine — Л.: Наука, 1975.

Литература


Приложения

Ссылки

Эта страница в последний раз была отредактирована 6 октября 2023 в 04:50.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).