Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Капиллярное давление

Из Википедии — свободной энциклопедии

Механика сплошных сред
Сплошная среда
См. также: Портал:Физика

Капиллярным давлением ( [Па]) (англ. capillary pressure) называют разность давлений, возникающую вследствие искривления поверхности жидкости. Такую поверхность имеют, например, капли в эмульсиях и туманах, капиллярные мениски.

В русскоязычной научной литературе вместо термина "капиллярное давление" могут использоваться понятия "лапласово давление" или "давление Лапласа".

Теория

Обозначим давление под искривлённой поверхностью жидкости — , давление под плоской поверхностью — .

Капиллярное давление определяется уравнением

,

при этом знак капиллярного давления зависит от знака кривизны.

Так, выпуклые поверхности имеют положительную кривизну: центр кривизны выпуклой поверхности находится внутри соответствующей фазы (в данном случае — внутри жидкости). Тогда согласно уравнению (1) капиллярное давление положительно, то есть давление под выпуклой поверхностью жидкости больше, чем давление под плоской поверхностью. Пример дисперсной частицы с выпуклой поверхностью — капля жидкости в аэрозоле или эмульсии. Выпуклую поверхность имеет мениск несмачивающей жидкости в капилляре.

Вогнутые поверхности, наоборот, имеют отрицательную кривизну, поэтому капиллярное давление отрицательно (этому случаю отвечает знак в уравнении (1)). Давление жидкости под вогнутой поверхностью меньше, чем под плоской. Пример вогнутой поверхности — мениск смачивающей жидкости в капилляре.

В качестве следствия также можно заметить, что избыточное давление Лапласа (точнее, сила, создающаяся под влиянием давления Лапласа) всегда сонаправлена радиус-вектору кривизны рассматриваемой поверхности .

Закон Лапласа

Капиллярное давление зависит от коэффициента поверхностного натяжения и кривизны поверхности. Эту связь описывает закон Лапласа (1805). Для вывода уравнения капиллярного давления найдём условие, при котором газовый пузырёк объёмом внутри жидкости сохраняется неизменным, то есть не расширяется и не сжимается. Равновесной форме соответствует минимальное значение энергии Гиббса. При увеличении радиуса пузырька на малую величину изменение энергии Гиббса будет равно

где - поверхность сферического пузырька радиусом r.

При термодинамическом равновесии фаз должно выполняться условие минимума энергии Гиббса (); отсюда получаем

В итоге находим связь между капиллярным давлением и радиусом кривизны r для вогнутой сферической поверхности:

Отрицательный знак капиллярного давления показывает, что внутри газового пузырька давление больше, чем давление в окружающей его жидкости. Именно по этой причине пузырёк не «схлопывается» под давлением окружающей его жидкости.

Для выпуклой же сферической поверхности получим

Заметим, что положительное капиллярное давление сжимает каплю[1].

Уравнения (3) и (4) представляют закон капиллярного давления Лапласа для сферической поверхности. Для поверхности произвольной формы закон Лапласа имеет вид

где  — главные радиусы кривизны.

Для цилиндрической поверхности радиусом второй главный радиус кривизны , поэтому

то есть в 2 раза меньше, чем для сферической поверхности радиусом r.

Величина

определяет среднюю кривизну поверхности. Таким образом, уравнение Лапласа (5) связывает капиллярное давление со средней кривизной поверхности жидкости

Ограничения для закона Лапласа и его применение

Закон Лапласа имеет определённые ограничения. Он выполняется достаточно точно, если радиус кривизны поверхности жидкости ( — молекулярный размер). Для нанообъектов это условие не выполняется, так как радиус кривизны соизмерим с молекулярными размерами.

Закон капиллярного давления имеет большое научное значение. Он устанавливает фундаментальное положение о зависимости физического свойства (давления) от геометрии, а именно от кривизны поверхности жидкости. Теория Лапласа оказала значительное влияние на развитие физикохимии капиллярных явлений, а также на некоторые другие дисциплины. Например, математическое описание искривлённых поверхностей (основы дифференциальной геометрии) было выполнено К. Гауссом именно в связи с капиллярными явлениями.

Закон Лапласа имеет много практических приложений в химической технологии, фильтрации, течении двухфазных потоков и т.д. Уравнение капиллярного давления используют во многих методах измерения поверхностного натяжения жидкостей. Закон Лапласа часто называют первым законом капиллярности.

Литература

  1. Сумм Б.Д. Основы коллоидной химии. — 1-е изд. — М.: Академия, 2006. — 240 с. — ISBN 5-7695-2634-3.
Эта страница в последний раз была отредактирована 5 мая 2021 в 10:54.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).