Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Изотро́пный ве́ктор (нульвектор) — ненулевой вектор псевдоевклидова векторного пространства (над полем вещественных чисел) или унитарного векторного пространства (над полем комплексных чисел), ортогональный самому себе, или, что эквивалентно, имеющий нулевую длину в смысле скалярного произведения рассматриваемого пространства. Наименование изотропный связано с физическим понятием изотропии.

В евклидовых пространствах таких векторов нет — нулевой длиной обладают лишь векторы, равные нулю. В псевдоевклидовых пространствах изотропные векторы существуют и образуют изотропный конус. Именно, вектор векторного пространства над полем вещественных или комплексных чисел с заданной в качестве скалярного произведения невырожденной билинейной формой с сигнатурой изотропен, если .

Связанные понятия

Изотропный конус в пространстве
  • Изотропным конусом псевдоевклидова или унитарного векторного пространства называется множество, состоящее из всех векторов нулевой длины данного пространства, то есть всех изотропных векторов и нулевого вектора.
  • Изотропное подпространство — подпространство псевдоевклидова или унитарного векторного пространства, целиком содержащееся в изотропном конусе этого пространства, то есть целиком состоящее из векторов нулевой длины. Подпространство является изотропным тогда и только тогда, когда любые два его вектора ортогональны друг другу[1]. Максимальная размерность изотропного подпространства псевдоевклидова пространства сингатуры не превосходит [2].
  • Вырожденное подпространство — подпространство псевдоевклидова или унитарного векторного пространства, ограничение скалярного произведения на которое вырождено. Подпространство является вырожденным тогда и только тогда, когда оно содержит хотя бы один изотропный вектор, ортогональный всем остальным векторам этого подпространства[1]. Очевидно, любое изотропное подпространство является вырожденным, но обратное не верно.

Примеры

Взаимное расположение плоскости и изотропного конуса в пространстве . Слева направо: плоскость псевдоевклидова, вырожденная, евклидова.
  • Простейший пример — изотропные векторы и изотропный конус в — псевдоевклидовом пространстве сигнатуры (2,1). Квадрат длины вектора задается формулой . Изотропный конус — прямой круговой конус . Изотропные подпространства — лежащие на нём прямые (образующие), вырожденные подпространства (отличные от изотропных) — плоскости, касающиеся изотропного конуса, то есть имеющие с ним ровно одну общую прямую. Все остальные плоскости являются либо евклидовыми (если пересекаются с изотропным конусом лишь в его вершине), либо псевдоевклидовыми сигнатуры (1,1) (если пересекаются с ним по двум различным прямым)[3].
  • Важнейший пример — изотропные векторы и изотропный конус в пространстве Минковского — псевдоевклидовом пространстве сигнатуры (1,3), используемом в качестве геометрической интерпретации пространства-времени специальной теории относительности. В этом пространстве каждый вектор e имеет четыре координаты: , где скорость света, и квадрат его длины задается формулой . Изотропный конус пространства Минковского называется световым конусом, а изотропные векторы — световыми или светоподобными. Векторы, лежащие внутри светового конуса (), называются времениподобными, а векторы, лежащие вне светового конуса (), называются пространственноподобными.

Примечания

  1. 1 2 Ремизов А. О. Об изоморфизмах псевдоевклидовых пространств, Матем. образование, 2018, № 2(86), 15–39 (стр. 17).
  2. Ремизов А. О. Об изоморфизмах псевдоевклидовых пространств, Матем. образование, 2018, № 2(86), 15–39 (стр. 27, Лемма 2).
  3. Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия, — Физматлит, Москва, 2009 (гл. 7, пар. 7)

Литература

Эта страница в последний раз была отредактирована 8 октября 2020 в 05:53.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).