Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Зацепление Хопфа
Обозначение= L2a1
Число нитей = 2
Длина косы= 2
Число пересечений= 2
Коэффициент зацепления= 1
Гиперболический объём= 0
Класс= тор

Зацепление Хопфа — простейшее нетривиальное зацепление с двумя и более компонентами[1], состоит из двух окружностей, зацеплённых однократно[2] и названо по имени Хайнца Хопфа[3].

Геометрическое представление

Конкретная модель состоит из двух единичных окружностей в перпендикулярных плоскостях, таких что каждая проходит через центр другой[2]. Эта модель минимизирует длину верёвки[en] (длина верёвки — инвариант теории узлов) зацепления и до 2002 года зацепление Хопфа являлось единственным, у которого длина верёвки была известна [4]. Выпуклая оболочка этих двух окружностей образует тело, называемое олоидом[5].

Свойства

Скейн-соотношение для зацепления Хопфа

В зависимости от относительной ориентации[en] двух компонент коэффициент зацепления Хопфа равен ±1[6].

Зацепления Хопфа является (2,2)-торическим зацеплением[7] с описывающим словом[8] .

Дополнение зацепления Хопфа — , цилиндр над тором[9]. Это пространство имеет локально евклидову геометрию, так что зацепление Хопфа не является гиперболическим. Группа узлов зацепления Хопфа (фундаментальная группа его дополнения) — это (свободная абелева группа на двух генераторах) и она отличает зацепление Хопфа от двух незацеплённых окружностей, которым соответствует свободная группа на двух генераторах[10].

Зацепление Хопфа не может быть раскрашено в три цвета. Это непосредственно следует из факта, что зацепление можно раскрасить лишь в два цвета, что противоречит второй части определения раскраски. В каждом пересечении будет максимум 2 цвета, так что при раскраске мы нарушим требование иметь 1 или 3 цвета в каждом пересечении, либо нарушим требование иметь более 1 цвета.

Расслоение Хопфа

Расслоение Хопфа — это непрерывное отображение из 3-сферы (трёхмерная поверхность в четырёхмерном евклидовом пространстве) в более привычную 2-сферу, такое, что прообраз каждой точки на 2-сфере является окружностью. Таким образом получается разложение 3-сферы на непрерывное семейство окружностей и каждые две различных окружности из этого семейства образуют зацепление Хопфа. Этот факт и побудил Хопфа заняться изучением зацеплений Хопфа — поскольку любые два слоя зацеплены, расслоение Хопфа является нетривиальным расслоением[en]. С этого началось изучение гомотопических групп сфер[11].

История

Герб Бузан-ха[en]

Зацепление названо именем тополога Хайнца Хопфа, исследовавшего его в 1931 году в работе по расслоению Хопфа[12]. Однако такое зацепление использовал ещё Гаусс[3], а вне математики оно встречалось задолго до этого, например, в качестве герба японской буддийской секты Бузан-ха[en], основанной в XVI столетии.

См. также

  • Катенаны, химические соединения с двумя механически сцеплёнными молекулами
  • Узел Соломона, два кольца с двойным зацеплением

Примечания

Литература

  • Прасолов В. В., Сосинский А. Б. . Узлы, зацепления, косы и трёхмерные многообразия. — М.: МЦНМО, 1997. — ISBN 5-900916-10-3.
  • Adams, Colin Conrad. . The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. — American Mathematical Society, 2004. — ISBN 9780821836781.
  • Cantarella J., Kusner R. B., Sullivan J. M.  On the minimum ropelength of knots and links // Inventiones Mathematicae. — 2002. — Vol. 150, no. 2. — doi:10.1007/s00222-002-0234-y. — arXiv:math/0103224.
  • Dirnböck H., Stachel H.  The development of the oloid // Journal for Geometry and Graphics. — 1997. — Vol. 1, no. 2.
  • Hatcher, Allen. . Algebraic Topology. — 2002. — ISBN 9787302105886.
  • Hopf, Heinz.  Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche // Mathematische Annalen. — Berlin: Springer, 1931. — doi:10.1007/BF01457962.
  • Kauffman, Louis H. . On Knots. — Princeton University Press, 1987. — Vol. 115. — (Annals of Mathematics Studies). — ISBN 9780691084350.
  • Kusner R. B., Sullivan J. M. . Topology and geometry in polymer science (Minneapolis, MN, 1996). — New York: Springer, 1998. — Vol. 103. — (IMA Vol. Math. Appl.). — doi:10.1007/978-1-4612-1712-1_7.
  • Shastri, Anant R. . Basic Algebraic Topology. — CRC Press, 2013. — ISBN 9781466562431.
  • Turaev, Vladimir G. . Quantum Invariants of Knots and 3-manifolds. — Walter de Gruyter, 2010. — Vol. 18. — (De Gruyter studies in mathematics). — ISBN 9783110221831.

Ссылки

Эта страница в последний раз была отредактирована 4 сентября 2023 в 19:27.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).