To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Diphosgene
Diphosgene
Diphosgene
Names
Preferred IUPAC name
Trichloromethyl carbonochloridate
Other names
Trichloromethyl chloroformate, surpalite
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.007.242 Edit this at Wikidata
EC Number
  • 207-965-9
RTECS number
  • LQ7350000
UNII
  • InChI=1S/C2Cl4O2/c3-1(7)8-2(4,5)6 checkY
    Key: HCUYBXPSSCRKRF-UHFFFAOYSA-N checkY
  • InChI=1/C2Cl4O2/c3-1(7)8-2(4,5)6
    Key: HCUYBXPSSCRKRF-UHFFFAOYAO
  • ClC(=O)OC(Cl)(Cl)Cl
Properties
C2Cl4O2
Molar mass 197.82 g/mol
Appearance liquid at room temperature
Density 1.65 g/cm3
Melting point −57 °C (−71 °F; 216 K)
Boiling point 128 °C (262 °F; 401 K)
insoluble, reacts
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
highly toxic, maybe corrosive; asphyxiant
GHS labelling:
GHS05: Corrosive
GHS06: Toxic
Danger
H300, H301, H314, H330
P260, P264, P270, P271, P280, P284, P301+P310, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P320, P321, P330, P363, P403+P233, P405, P501
Flash point 32 °C (90 °F; 305 K)
Related compounds
Related compounds
COCl2, Cl2
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Diphosgene is an organic chemical compound with the formula ClCO2CCl3. This colorless liquid is a valuable reagent in the synthesis of organic compounds. Diphosgene is related to phosgene and has comparable toxicity, but is more conveniently handled because it is a liquid, whereas phosgene is a gas.

YouTube Encyclopedic

  • 1/5
    Views:
    5 033
    366
    81 823
    5 357
    765
  • Phosgene's Big Brother: Triphosgene
  • Alcohols to Alkyl Chlorides, Part 3: Phosgene (COCl2)
  • The Ultimate Guide to Chemical Weapons
  • The WORST Nobel Prize Ever Awarded
  • Chemical Warfare [J&J]

Transcription

Production and uses

Diphosgene is prepared by radical chlorination of methyl chloroformate under UV light:[1]

Cl-CO-OCH3 + 3 Cl2 —(hv)→ Cl-CO-OCCl3 + 3 HCl

Another method is the radical chlorination of methyl formate:[2]

H-CO-OCH3 + 4 Cl2 —(hv)→ Cl-CO-OCCl3 + 4 HCl

Diphosgene converts to phosgene upon heating or upon catalysis with charcoal. It is thus useful for reactions traditionally relying on phosgene. For example, it convert amines into isocyanates, secondary amines into carbamoyl chlorides, carboxylic acids into acid chlorides, and formamides into isocyanides. Diphosgene serves as a source of two equivalents of phosgene:

2 RNH2 + ClCO2CCl3 → 2 RNCO + 4 HCl

With α-amino acids diphosgene gives the acid chloride-isocyanates, OCNCHRCOCl, or N-carboxy-amino acid anhydrides depending on the conditions.[3]

It hydrolyzes to release HCl in humid air.

Diphosgene is used in some laboratory preparations because it is easier to handle than phosgene.

Role in warfare

Diphosgene was originally developed as a pulmonary agent for chemical warfare, a few months after the first use of phosgene. It was used as a poison gas in artillery shells by Germany during World War I. The first recorded battlefield use was in May 1916.[4] Diphosgene was developed because the vapors could destroy the filters of the gas masks in use at the time.

Safety

Diphosgene has a relatively high vapor pressure of 10 mm Hg (1.3 kPa) at 20 °C and decomposes to phosgene around 300 °C. Exposure to diphosgene is similar in hazard to phosgene.

See also

References

  1. ^ Keisuke Kurita and Yoshio Iwakura (1979). "Trichloromethyl Chloroformate as a Phosgene Equivalent: 3-Isocyanatopropanoyl Chloride". Organic Syntheses. 59: 195; Collected Volumes, vol. 6, p. 715.
  2. ^ Lohs, K. H.: Synthetische Gifte; Berlin (east), 1974 (German).
  3. ^ Kurita, K. "Trichloromethyl Chloroformate" in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004, J. Wiley & Sons, New York. doi:10.1002/047084289X.
  4. ^ Jones, Simon; Hook, Richard (2007). World War I Gas Warfare Tactics and Equipment. Osprey Publishing. ISBN 978-1-84603-151-9.

External links

This page was last edited on 13 May 2024, at 20:55
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.