To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Sodium phenoxide

From Wikipedia, the free encyclopedia

Sodium phenoxide
Names
Preferred IUPAC name
Sodium phenoxide[1]
Other names
Sodium phenolate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.004.862 Edit this at Wikidata
UNII
  • InChI=1S/C6H6O.Na/c7-6-4-2-1-3-5-6;/h1-5,7H;/q;+1/p-1
    Key: NESLWCLHZZISNB-UHFFFAOYSA-M
  • InChI=1/C6H6O.Na/c7-6-4-2-1-3-5-6;/h1-5,7H;/q;+1/p-1
    Key: NESLWCLHZZISNB-REWHXWOFAP
  • [Na+].[O-]c1ccccc1
Properties
C6H5NaO
Molar mass 116.09 g/mol
Appearance White solid
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Harmful, Corrosive
Flash point Non-flammable
Non-flammable
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Sodium phenoxide (sodium phenolate) is an organic compound with the formula NaOC6H5. It is a white crystalline solid. Its anion, phenoxide, also known as phenolate, is the conjugate base of phenol. It is used as a precursor to many other organic compounds, such as aryl ethers.

YouTube Encyclopedic

  • 1/3
    Views:
    28 448
    12 297
    6 268
  • SN1 SN2 E1 E2 Practice Problems, Reagents, Reaction Mechanisms Made Easy
  • 7a. pKa and pKb of conjugate acids and bases
  • Phenols

Transcription

Synthesis and structure

Most commonly, solutions of sodium phenoxide are produced by treating phenol with sodium hydroxide.[2] Anhydrous derivatives can be prepared by combining phenol and sodium. A related, updated procedure uses sodium methoxide instead of sodium hydroxide:[3]

NaOCH3 + HOC6H5 → NaOC6H5 + HOCH3

Sodium phenoxide can also be produced by the "alkaline fusion" of benzenesulfonic acid, whereby the sulfonate groups are displaced by hydroxide:

C6H5SO3Na + 2 NaOH → C6H5OH + Na2SO3

This route once was the principal industrial route to phenol.[citation needed]

Structure

Like other sodium alkoxides, solid sodium phenoxide adopts a complex structure involving multiple Na-O bonds. Solvent-free material is polymeric, each Na center being bound to three oxygen ligands as well as the phenyl ring. Adducts of sodium phenoxide are molecular, such as the cubane-type cluster [NaOPh]4(HMPA)4.[4]

Part of the crystal structure of pure sodium phenoxide
Subunit of the crystal structure of pure sodium phenoxide, illustrating the binding of phenoxide ions to sodium through both the oxygen and the arene.

Reactions

Sodium phenoxide is a moderately ?strong ?base. Acidification gives phenol:[5]

PhOH ⇌ PhO + H+          (K = 10−10)

The acid-base behavior is complicated by homoassociation, reflecting the association of phenol and phenoxide.[6]

Sodium phenoxide reacts with alkylating agents to afford alkyl phenyl ethers:[2]

NaOC6H5 + RBr → ROC6H5 + NaBr

The conversion is an extension of the Williamson ether synthesis. With acylating agents, one obtains phenyl esters:[citation needed]

NaOC6H5 + RC(O)Cl → RCO2C6H5 + NaCl

Sodium phenoxide is susceptible to certain types of electrophilic aromatic substitutions. For example, it reacts with carbon dioxide to form 2-hydroxybenzoate, the conjugate base of salicylic acid. In general however, electrophiles irreversibly attack the oxygen center in phenoxide.[citation needed]

The Kolbe–Schmitt reaction.
The Kolbe–Schmitt reaction.

References

  1. ^ International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. pp. 1071, 1129. doi:10.1039/9781849733069. ISBN 978-0-85404-182-4.
  2. ^ a b C. S. Marvel; A. L. Tanenbaum (1929). "γ-Phenoxypropyl Bromide". Org. Synth. 9: 72. doi:10.15227/orgsyn.009.0072.
  3. ^ Kornblum, Nathan; Lurie, Arnold P. (1959). "Heterogeneity as a Factor in the Alkylation of Ambident Anions: Phenoxide Ions1,2". Journal of the American Chemical Society. 81 (11): 2705–2715. doi:10.1021/ja01520a030.
  4. ^ Michael Kunert, Eckhard Dinjus, Maria Nauck, Joachim Sieler "Structure and Reactivity of Sodium Phenoxide - Following the Course of the Kolbe-Schmitt Reaction" Chemische Berichte 1997 Volume 130, Issue 10, pages 1461–1465. doi:10.1002/cber.19971301017
  5. ^ Smith, Michael B.; March, Jerry (2007), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.), New York: Wiley-Interscience, ISBN 978-0-471-72091-1
  6. ^ K. Izutsu (1990). Acid-Base Dissociation Constants in Dipolar Aprotic Solvents. Vol. 35. Blackwell Scientific Publications.

External links

Media related to Sodium phenoxide at Wikimedia Commons

This page was last edited on 20 May 2024, at 12:37
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.