To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Observational history of comets

From Wikipedia, the free encyclopedia

The Book of Miracles (Augsburg, 16th century).

Comets have been observed by humanity for thousands of years, but only in the past few centuries have they been studied as astronomical phenomena. Before modern times, great comets caused worldwide fear, considered bad omens foreboding disaster and turmoil, for example the 1066 passage of Halley's Comet depicted as heralding the Norman conquest of England. As the science of astronomy developed planetary theories, understanding the nature and composition of comets became a challenging mystery and a large area of study.

Halley's comet, reappearing every 75–76 years, was pivotal to the study of comets, especially of their orbits. Thinkers such as Immanuel Kant in the eighteenth century hypothesized about the physical composition of comets. Today, comets are well understood as "dirty snowballs" in eccentric orbits around the Sun, but they continue as objects of scientific and popular fascination. In 1994, comet Shoemaker–Levy crashed spectacularly into the atmosphere of Jupiter. In 1997, a cult committed mass suicide inspired by the passage of comet Hale-Bopp. Since 1985, a total of 8 comets have been visited by spacecraft.

YouTube Encyclopedic

  • 1/5
    Views:
    3 605 463
    9 161
    1 505 448
    29 316
    1 402
  • Introduction to Astronomy: Crash Course Astronomy #1
  • Jupiter - friend or foe? - Observing the Universe (1/3)
  • Halley's Comet - P1
  • Famous Astronomers - 30 Greatest Astronomers in History
  • Astronomy Cast Ep. 570: Discovering Comets

Transcription

Hello, and welcome to Crash Course Astronomy! I’m your host, Phil Plait, and I’ll be taking you on a guided tour of the entire Universe. You might want to pack a lunch. Over the course of this series we’ll explore planets, stars, black holes, galaxies, subatomic particles, and even the eventual fate of the Universe itself. But before we step into space, let’s take a step back. I wanna talk to you about science. There are lots of definitions of science, but I’ll say that it’s a body of knowledge, and a method of how we learned that knowledge. Science tells us that stuff we know may not be perfectly known; it may be partly or entirely wrong. We need to watch the Universe, see how it behaves, make guesses about why it’s doing what it’s doing, and then try to think of ways to support or disprove those ideas. That last part is important. Science must be, above all else, honest if we really want to get to the bottom of things. Understanding that our understanding might be wrong is essential, and trying to figure out the ways we may be mistaken is the only way that science can help us find our way to the truth, or at least the nearest approximation to it. Science learns. We meander a bit as we use it, but in the long run we get ever closer to understanding reality, and that is the strength of science. And it’s all around us! Whether you know it or not, you’re soaking in science. You’re a primate. You have mass. Mitochondria in your cells are generating energy. Presumably, you’re breathing oxygen. But astronomy is different. It’s still science, of course, but astronomy puts you in your place. Because of astronomy, I know we’re standing on a sphere of mostly molten rock and metal 13,000 kilometers across, with a fuzzy atmosphere about 100 km high, surrounded by a magnetic field that protects us from the onslaught of subatomic particles from the Sun 150 million km away, which is also flooding space with light that reaches across space, to illuminate the planets, asteroids, dust, and comets, racing out past the Kuiper Belt, through the Oort Cloud, into interstellar space, past the nearest stars, which orbit along with gas clouds and dust lanes in a gigantic spiral galaxy we call the Milky Way that has a supermassive black hole in its center, and is surrounded by 150 globular clusters and a halo of dark matter and dwarf galaxies, some of which it’s eating, all of which can be seen by other galaxies in our Local Group like Andromeda and Triangulum, and our group is on the outskirts of the Virgo galaxy cluster, which is part of the Virgo supercluster, which is just one of many other gigantic structures that stretch most of the way across the visible Universe, which is 90-billion light years across and expanding every day, even faster today than yesterday due to mysterious dark energy, and even all that might be part of an infinitely larger multiverse that extends forever both in time and space. See? Astronomy puts you in your place. But what exactly is astronomy? This isn’t necessarily an obvious thing to ask. When I was a kid, it was easy: Astronomy is the study of things in the sky. The sun, moon, stars, galaxies, and stuff like that. But it’s not so easy to pigeonhole these days. Take, for example, Mars. When I haul my ‘scope out to the end of my driveway and look at Mars, that’s astronomy, right? Of course! But what about the rovers there? Those machines aren’t doing astronomy, surely. They’re doing chemistry, geology, hydrology, petrology… everything but astronomy! So nowadays, what’s astronomy? I’d say it’s still studying stuff in the sky, but it’s branched out quite a bit from there. Borders between it and other fields of science are fuzzy… a theme I’ll be hitting on several times over this series. Humans might like firm, delineated boundaries between things, but nature isn’t so picky. And that brings us to our first edition of “Focus On…” This week’s topic: Astronomers! Who are we? What do we do? I used to look through telescopes for a living, or at least study the data that came from detectors strapped onto them. But now I talk and write (and make videos) about astronomy, and relegate my viewing to my personal backyard telescope. But I still consider myself an astronomer, so that should give you an idea that there’s a lot of wiggle room in the profession. In fact, when I worked on Hubble Space Telescope, I was actually hired as... a programmer! I coded in the language used by the folks helping to build and calibrate a camera that was due to launch into space and be installed onto Hubble by an astronaut. Once the data from that camera are taken and analyzed, you have to know what to do with them. Do the observations fit the physical model of how stars blow up, or how galaxies form, or the way gas flows through space? Well, you better know your math and physics, because that’s how we test our hypotheses. And someone who does that is generally called an astrophysicist. Of course, those telescopes and detectors don’t create themselves. We need engineers to design and build them and technicians to use them. Most astronomers don’t actually use the telescopes themselves anymore; someone who’s trained in their specific use does that for them. Some of those instruments go into space, and some go to other worlds, like the moon and Mars. We need astronomers and engineers and software programmers who can build those, too. And then, at the end of all this, we need people to tell you all about it. Teachers, professors, writers, video makers, even artists. So I’ll tell you what: If you have an interest in the Universe, if you love to look up at the stars, if you crave to understand what’s going on literally over your head, then who am I to say you’re not an astronomer? However you define astronomy, humans have been looking up at the sky for as long as we’ve been humans. Certainly ancient people noticed the big glowy ball in the sky, and how it lit everything up while it was up, and how it got dark when it was gone. The other, fainter glowy thing tried, but wasn’t quite as good as lighting up the night. They probably took that sort of thing pretty seriously. They probably also noticed that when certain stars appeared in the sky, the weather started getting warmer and the days longer, and when other stars were seen, the weather would get colder and daytime shorten. And when humans settled down, discovered agriculture, and started farming, noticing those patterns in the sky would have had an even greater impact. It told them when to plant seeds, and when to harvest. The cycles in the sky became pretty important. So important that it wasn’t hard to imagine gods up there, looking down on us weak and ridiculous humans, interfering with our lives. Surely if the stars tell us when to plant, and control the weather, seasons, and the length of the day, they control our lives too… and astrology was born. Astrology literally means “study of the stars”; as a word it’s been used before science became a formal method of studying nature. It irks me a bit, since it got the good name, and now we’re stuck with “astronomy,” which means “law or culture of the stars." That’s not really what we do! But what the heck. Words change meaning over time, and now it’s pretty well understood that astronomy is science, and astrology… isn’t. Millennia ago, astrology was as close to science as you got. It had some of the flavors of science: astrologers observed the skies, made predictions about how it would affect people, and then those people would provide evidence for it by swearing up and down it worked. The thing is, it really didn’t; the fault of astrology lies in ourselves and not our stars. People tend to remember the hits and forget the misses when predictions are made, which is why they sometimes sit in casinos pumping nickels into machines that are in proven to be nothing more than a method for reducing the number of nickels you have. But astrology led to people to really study the sky, and find the patterns there, which led to a more rigorous understanding of how things worked in the heavenly vault. It wasn’t overnight, of course. This took centuries. Before the invention of the telescope, keen observers built all sorts of odd and wonderful devices to measure the heavens, and in fact it was before the telescope was first turned to the sky that a huge revolution in astronomy took place. It is patently obvious that the ground you stand on is fixed, rooted if you will, and the skies turn above us. The sun rises, the sun sets. The moon rises and sets, the stars themselves wheel around the sky at night. Clearly, the Earth is motionless, and the sky is what is actually moving. In fact, if you think about it, geocentrism makes perfect sense that all the objects in the sky revolve about the Earth, and are fixed to a series of nested spheres, some of which are transparent, maybe made of crystal, which spin once per day. The stars may just be holes in the otherwise opaque sphere, letting sunlight though. Sounds silly to you, doesn’t it? Well, here’s the thing: If you don’t have today’s modern understanding of how the cosmos works, this whole multiple-shells-of-things-in- the-sky thing actually does make sense. It explains a lot of what’s going on over your head, and if it was good enough for Plato, Aristotle, and Ptolemy, then by god it was good enough for you. And speaking of which, it was endorsed by the major religions of the time, so maybe it’s better if you just nod and agree and don’t think about it too hard. But a few centuries ago things changed. Although he wasn’t the first, the Polish mathematician and astronomer Copernicus came up with the idea that the sun was the center of the solar system, not the Earth. His ideas had problems, which we’ll get to in a later episode, but it did an incrementally better job than geocentrism. And then along came Tycho Brahe and Johannes Kepler, who modified that system, making it even better. Then Isaac Newton - oh, Newton - he invented calculus partly to help him understand the way objects moved in space. Over time, our math got better, our physics got better, and our understanding grew. Applied math was a revolution in astronomy, and then the use of telescopes was another. Galileo didn’t invent the telescope, by the way, but made them better; Newton invented a new kind that was even better than that, and we’ve run with the idea from there. Then, about a century or so ago, came another revolution: photography. We could capture much fainter objects on glass plates sprayed with light-sensitive chemicals, which revealed stars otherwise invisible to us, details in galaxies, beautiful clouds of gas and dust in space. And then in the latter half of the last century, digital detectors were invented, which were even more sensitive than film. We could use computers to directly analyze observations, and our knowledge leaped again. When these were coupled with telescopes sent in orbit around the Earth - where our roiling and boiling atmosphere doesn’t blur out observations - we began yet another revolution. And where are we now? We’ve come such a long way! What questions can we routinely ask that our ancestors would not have dared, what statements made with a pretty good degree of certainty? Think on this: The lights in the sky are stars! There are other worlds. We take the idea of looking for life on alien planets seriously, and spend billions of dollars doing it. Our galaxy is one of a hundred billion others. We can only directly see 4% of the Universe. Stars explode, and when they do they create the stuff of life: the iron in our blood, the calcium in our bones, the phosphorus that is the backbone of our DNA. The most common kind of star in the Universe is so faint you can’t see it without a telescope. Our solar system is filled to overflowing with worlds more bizarre than we could have dreamed. Nature has more imagination than we do. It comes up with some nutty stuff. We’re clever too, we big-brained apes. We’ve learned a lot… but there’s still a long way to go. So, with that, I think we’re ready. Let’s explore the universe. Today you learned what astronomy is, and that astronomers aren’t just people who operate telescopes, but include mathematicians, engineers, technicians, programmers, and even artists. We also wrapped up with a quick history of the origins and development of astronomy, from ancient observers to the Hubble Space Telescope. Crash Course is produced in association with PBS Digital Studios. This episode was written by me, Phil Plait. The script was edited by Blake de Pastino, and our consultant is Dr. Michelle Thaller. It was co-directed by Nicholas Jenkins and Michael Aranda, and the graphics team is Thought Café.

Early observations and thought

Little is known of what people thought about comets before Aristotle, who observed his eponymous comet, and most of what is known comes secondhand. From cuneiform astronomical tablets, and works by Aristotle, Diodorus Siculus, Seneca, and one attributed to Plutarch but now thought to be Aetius, it is observed that ancient philosophers divided themselves into two main camps. Some believed comets to be astronomical entities; others affirmed their meteorological nature.[1]

Until the sixteenth century, comets were usually considered bad omens of deaths of kings or noble men, or coming catastrophes, or even interpreted as attacks by heavenly beings against terrestrial inhabitants.[2][3] From ancient sources, such as Chinese oracle bones, it is known that their appearances have been noticed by humans for millennia.[4] The earliest known picture of a comet is that of Halley's Comet depicted as a terrifying omen on the Bayeux Tapestry, which recorded the Norman conquest of England in 1066 CE.[5][6] Another illustration published in the Nuremberg Chronicle in 1493 depicts the comet's 684 CE apparition.[7]

Meteors and comets were of great importance to the native inhabitants of Mexico. Meteors were alternatively viewed as arrows of stellar gods, as their cigar butts, and even as their excrement. The arrows could hit animals or people and were feared when walking at night. Comets were conceived as smoking stars and as bad omens, e.g., announcing the death of a ruler.[8]

Ancient Chinese records of comet apparitions have been particularly useful to modern astronomers. They are accurate, extensive, and consistent over three millennia. The past orbits of many comets have been calculated entirely from these records and most notably they were used in connection with Halley's comet.[9] Ancient Chinese made important decisions by looking at celestial omens and comets were an important omen, always disastrous. Under the theory of Wu Xing (also known as five elements), comets were thought to signify an imbalance of yin and yang.[10] Chinese emperors employed observers specifically to watch for them. Some important decisions were made as a result. For instance, Emperor Ruizong of Tang abdicated after a comet appearance in 712 CE.[11] Comets were thought to have military significance. For example, the breakup of a comet on 35 CE was interpreted as portending the destruction of Gongsun Shu by Wu Han.[12]

According to Norse Mythology, comets were actually a part of the Giant Ymir's skull. According to the tale, Odin and his brothers slew Ymir after the Battle of Ragnarok and set about constructing the world (Earth) from his corpse. They fashioned the oceans from his blood, the soil from his skin and muscles, vegetation from his hair, clouds from his brains, and the sky from his skull. Four dwarves, corresponding to the four cardinal directions, held Ymir’s skull above the Earth. Following this tale, comets in the sky, as believed by the Norse, were flakes of Ymir's skull falling from the sky and then disintegrating.[13]

The only place in the world where a comet is worshiped is in a temple at Rome. It was a comet that the divine Augustus judged as particularly propitious to himself since it appeared at the beginning of his rule during the games which he gave in honor of Venus Genetrix not long after his father's death when he was a member of the religious body that Caesar had founded.[14]

In the first book of his Meteorology, Aristotle propounded the view of comets that would hold sway in Western thought for nearly two thousand years. He rejected the ideas of several earlier philosophers that comets were planets, or at least a phenomenon related to the planets, on the grounds that while the planets confined their motion to the circle of the Zodiac, comets could appear in any part of the sky.[15] Instead, he described comets as a phenomenon of the upper atmosphere, where hot, dry exhalations gathered and occasionally burst into flame. Aristotle held this mechanism responsible for not only comets, but also meteors, the aurora borealis, and even the Milky Way.[16] Aristotle introduced his theory of how comets came to be by first stating that the world was divided into two parts: the earth and the heavens. The upper parts of the Earth, below the Moon, contained phenomena such as the Milky Way and comets. These phenomena were created from a mixture of four elements that were naturally found on Earth: water, earth, fire, and air. He theorized that the Earth was the center of the universe, which was surrounded by various other planets and stars. The universe or better known as the heavens filled the void above the terrestrial atmosphere with a fifth element called "Aether." Aristotle believed that comets were shooting stars that evolved into something much different. This proved that comets came from a combination of the elements found on Earth. Comets could not have come from the heavens as the heavens are never-changing but comets are ever-changing as they move through space.[17] Aristotle believed that comets were shooting stars that evolved into something much different. Aristotle considered comets as a specific form of shooting stars that can occur under a very delicate combination of physical conditions. It is not known how many comet appearances Aristotle and his contemporaries witnessed or how much quantitative observational information they had about the trajectory, motion and duration of comets.[18]

Anaxagoras and Democritus’ theory deviated from Aristotle’s, as they believed comets were only after-images or shadows from planetary eclipses. Pythagorean claimed comets were planets that revolved around the Sun for a longer period of time across the edge of the Sun.[19] Hippocrates of Chios and Aeschylus had a similar belief to that of Pythagorean, as they both believe comets were planets that had special properties. Chios and Aeschylus theorized that comets are planets that have an immaterial tail produced by the atmosphere. Aristotle’s theory over the creation and properties of a comet was prevalent up until the 1600s.[17] Many philosophers and astrologers came up with their own theories to try and explain the phenomena that is a comet but only two were of relevance. Aristotle’s theory still prevailed, along with Seneca’s.

Seneca believed comets came from the celestial region of the universe. He firmly opposed Aristotle’s theory that comets were formed from the element of fire by stating the comets fire would grow if it ever entered the lower depths of the atmosphere. Seneca recognized the flaws in his theory as he understood that accurately and consistently observing a comet had a high level of difficulty.[20][21] Seneca the Younger, in his Natural Questions, observed that comets moved regularly through the sky and were undisturbed by the wind, behavior more typical of celestial than atmospheric phenomena. While he conceded that the other planets do not appear outside the Zodiac, he saw no reason that a planet-like object could not move through any part of the sky.[22]

Pre-Modern views on comets

In the Islamicate empire, Nasir al-Din al-Tusi used the phenomena of comets to refute Ptolemy's claim that a stationary Earth can be determined through observation.[23] Ali Qushji, in his Concerning the Supposed Dependence of Astronomy upon Philosophy, rejected Aristotelian physics and completely separated natural philosophy from astronomy. After observing comets, Ali Qushji concluded, on the basis of empirical evidence rather than speculative philosophy, that the moving Earth theory is just as likely to be true as the stationary Earth theory and that it is not possible to empirically deduce which theory is true.[24]

In the mid 1500s, a mathematician by the name of Jean Pena opposed Aristotle’s theory of comets by studying the physics and math behind the phenomena. He deducted that comets maintained its visual appearance, regardless of the view and angle in which is observed near the horizon of the Sun. Pena argued that the orientation and appearance of the comets were due to the physics of space. Pena claimed comets were at a farther distance from the Earth than the Moon as it would pass the Moon at a greater speed, due to the effects of Earth’s gravity. The tail of a comet points toward the direction of the Sun as it is moving through space based on the laws of refraction. The comet’s tail is composed of an air-like element that is transparent as it is seen in space but only when it is faced away from the Sun. The visibility of the tail is explained by solar rays reflecting off of the tail. The Laws of Refraction allows the human eye to visually see the tail of a comet in space at a different position than it truly is because of the reflection from the Sun.[25]

Tycho Brahe's sketching of his observations of the Great Comet of 1577 in his notebook.

A great comet appeared in the sky above Europe on 1577 AD. Tycho Brahe decided to try and estimate the distance to this comet by measuring its parallax, the effect whereby the position or direction of an object appears to differ when viewed from different positions. He proposed that comets (like planets) return to their respective positions in the sky, meaning that comets too follow an elliptic path around the Sun. On the other-hand, astronomers like Johannes Kepler believe that these celestial bodies proceed on a linear course throughout the cosmos.[26] The parallax of closer object in the sky is greater than the parallax for distant objects in the sky. After observing the Great Comet of 1577, Tycho Brahe realized that the position of a comet in the sky stayed the same regardless of where in Europe you measure it from.[27] The difference in position of the comet should have been larger if the comet was located within the orbit of Earth. From Brahe's calculations, within the precision of the measurements, the comet must be at least four times more distant than from the Earth to the Moon.[28][29] Sketches found in one of Brahe's notebooks seem to indicate that the comet may have traveled close to Venus. Not only that, Tycho observed the comet travel by Mercury, Mars, and the sun as well.[30] After this discovery, Tycho Brahe created a new model of the Universe – a hybrid between the classical geocentric model and the heliocentric one that had been proposed in 1543 by Polish astronomer Nicolaus Copernicus – to add comets.[31] Brahe made thousands of very precise measurements of the comet's path, and these findings contributed to Johannes Kepler's theorizing of the laws of planetary motion and realization that the planets moved in elliptical orbits.[32]

Orbital studies

The orbit of the comet of 1680, fit to a parabola, as shown in Isaac Newton's Principia

Though comets had now been demonstrated to be in space, the question of how they moved would be debated for most of the next century. Even after Johannes Kepler had determined in 1609 that the planets moved about the Sun in elliptical orbits, he was reluctant to believe that the laws that governed the motions of the planets should also influence the motion of other bodies; he believed that comets travel among the planets along straight lines, and it required Edmond Halley to prove that their orbits are in fact curved.[33] Galileo Galilei, although a staunch Copernicanist, rejected Tycho's parallax measurements and his Discourse on Comets held to the Aristotelian notion of comets moving on straight lines through the upper atmosphere.[34]

The matter was resolved by the bright comet that was discovered by Gottfried Kirch on November 14, 1680. Astronomers throughout Europe tracked its position for several months. In 1681, the Saxon pastor Georg Samuel Doerfel set forth his proofs that comets are heavenly bodies moving in parabolas of which the Sun is the focus. Then Isaac Newton, in his Principia Mathematica of 1687, proved that an object moving under the influence of his inverse-square law of universal gravitation must trace out an orbit shaped like one of the conic sections, and he demonstrated how to fit a comet's path through the sky to a parabolic orbit, using the comet of 1680 as an example.[35] Evidently understanding that comets lose matter as they approach the Sun, Bernard de Fontenelle wrote in 1686: "We think ourselves unhappy when a comet appears, but the misfortune is the comet's."[36]

The theories that astrologers and philosophers before the 1600s came up with were still prevalent by the time Isaac Newton began studying mathematics and physics. John Flamsteed, one of the leading astronomer in the Newtonian age revised Descartes' theory to prove that comets were planets. The motion of the comets came from magnetic and vortex particle forces, and the tails of the comets were physical not just a reflection. Flamsteed's revision contradicted Aristotle and many other comet theories as they believed that comets came from Earth and had their own special properties from the rest of the phenomena in space. However, Newton rejected Flamsteed's revision of this theory. Newton theorized that the properties of these phenomena were not due to magnetic forces because magnetic forces lose their effect with heat. Newton finalized his study of comets when he revised Flamsteed's theory that a comet's motion was due to a force acting upon it. Isaac Newton believed that the motion of comets came from an attracting force, which came from either the natural effects of the Sun or a different phenomenon. Newton's discovery over the comets motion propelled the overall study of comets as a part of the heavens.[37]

Halley at first agreed with the longtime consensus that each comet was a different entity making a single visit to the Solar System.[38] In 1705, he applied Newton's method to 23 cometary apparitions that had occurred between 1337 and 1698. Halley noted that three of these, the comets of 1531, 1607, and 1682, had very similar orbital elements, and he was further able to account for the slight differences in their orbits in terms of gravitational perturbation by Jupiter and Saturn. Confident that these three apparitions had been three appearances of the same comet, he predicted that it would appear again in 1758–59.[39][38][7] (Earlier, Robert Hooke had identified the comet of 1664 with that of 1618,[40] while Giovanni Domenico Cassini had suspected the identity of the comets of 1577, 1665, and 1680.[41] Both were incorrect.) Halley's predicted return date was later refined by a team of three French mathematicians: Alexis Clairaut, Joseph Lalande, and Nicole-Reine Lepaute, who predicted the date of the comet's 1759 perihelion to within one month's accuracy.[42] Halley died before the comet's return;[38] when it returned as predicted, it became known as Halley's Comet (with the latter-day designation of 1P/Halley). The comet next appears in 2061.

In the 19th century, the Astronomical Observatory of Padova, was an epicenter in the observational study of comets. Led by Giovanni Santini (1787–1877) and followed by Giuseppe Lorenzoni (1843–1914), this observatory was devoted to classical astronomy, mainly to the new comets and planets orbit calculation, with the goal of compiling of a catalog of almost ten thousand stars and comets. Situated in the Northern portion of Italy, observations from this observatory were key in establishing important geodetic, geographic, and astronomical calculations, such as the difference of longitude between Milan and Padua as well as Padua to Fiume.[43] In addition to these geographic observations, correspondence within the observatory, particularly between Santini and another astronomer at the observatory Giuseppe Toaldo, shows the importance of comet and planetary orbital observations to not only the Observatory as a whole, but also to the rest of Europe and the scientific world.[44]

Among the comets with short enough periods to have been observed several times in the historical record, Halley's Comet is unique in that it is consistently bright enough to be visible to the naked eye while passing through the inner Solar System. Since the confirmation of the periodicity of Halley's Comet, other periodic comets have been discovered through the use of the telescope. The second comet found to have a periodic orbit was Encke's Comet (with the official designation of 2P/Encke). During the period 1819–1821 the German mathematician and physicist Johann Franz Encke computed the orbits for a series of comets that had been observed in 1786, 1795, 1805, and 1818, and he concluded that they were the same comet, and successfully predicted its return in 1822.[45] By 1900, seventeen comets had been observed through more than one passage through their perihelions, and then recognized as being periodic comets. As of November 2021, 432 comets[46] have achieved this distinction, although several of these have disintegrated or been lost.

By 1900 comets were categorized as "periodic", with elliptical orbits, or "non-periodic", one-time with parabolic or hyperbolic orbits. Astronomers believed that planets captured non-periodic comets into elliptical orbits; each planet had a "family" of comets that it captured, with Jupiter's the largest. In 1907 A. O. Leuschner proposed that many non-periodic comets would have elliptical orbits if studied longer, making most comets permanent parts of the Solar System, even those with orbital periods of thousands of years. This implied a large group of comets outside the orbit of Neptune,[38] the Oort cloud.

Physical characteristics

"From his huge vapouring train perhaps to shake
Reviving moisture on the numerous orbs,
Thro' which his long ellipsis winds; perhaps
To lend new fuel to declining suns,
To light up worlds, and feed th' ethereal fire."

James Thomson The Seasons (1730; 1748)[47]

Isaac Newton described comets as compact and durable solid bodies moving in oblique orbit and their tails as thin streams of vapor emitted by their nuclei, ignited or heated by the Sun. Newton suspected that comets were the origin of the life-supporting component of air.[48] Newton also believed that the vapors given off by comets might replenish the planets' supplies of water (which was gradually being converted into soil by the growth and decay of plants) and the Sun's supply of fuel.

As early as the 18th century, some scientists had made correct hypotheses as to comets' physical composition. In 1755, Immanuel Kant hypothesized that comets are composed of some volatile substance, whose vaporization gives rise to their brilliant displays near perihelion.[49] In 1836, the German mathematician Friedrich Wilhelm Bessel, after observing streams of vapor during the appearance of Halley's Comet in 1835, proposed that the jet forces of evaporating material could be great enough to significantly alter a comet's orbit, and he argued that the non-gravitational movements of Comet resulted from this phenomenon.[50]

However, another comet-related discovery overshadowed these ideas for nearly a century. Over the period 1864–1866 the Italian astronomer Giovanni Schiaparelli computed the orbit of the Perseid meteors, and based on orbital similarities, correctly hypothesized that the Perseids were fragments of Comet Swift–Tuttle. The link between comets and meteor showers was dramatically underscored when in 1872, a major meteor shower occurred from the orbit of Comet Biela, which had been observed to split into two pieces during its 1846 apparition, and was never seen again after 1852.[51] A "gravel bank" model of comet structure arose, according to which comets consist of loose piles of small rocky objects, coated with an icy layer.[52]

By the middle of the twentieth century, this model suffered from a number of shortcomings: in particular, it failed to explain how a body that contained only a little ice could continue to put on a brilliant display of evaporating vapor after several perihelion passages. In 1950, Fred Lawrence Whipple proposed that rather than being rocky objects containing some ice, comets were icy objects containing some dust and rock.[53] This "dirty snowball" model soon became accepted and appeared to be supported by the observations of an armada of spacecraft (including the European Space Agency's Giotto probe and the Soviet Union's Vega 1 and Vega 2) that flew through the coma of Halley's Comet in 1986, photographed the nucleus, and observed jets of evaporating material.[54]

According to research, large comets with a radius of over 10 kilometers could contain liquid water at their cores by the decay of radioactive isotopes of aluminum or iron.[55][56]

Observations presently indicate that the nuclei of comets are ice dust conglomerates with masses ~ 1013 to 1019 g, radii ~ few km, average rotation periods ~ 15 hr and tensile strength ~ 105 dyne cm−2. The latter indicates that cometary nuclei are very fragile entities. All observations support the basic concept of a comet nucleus based on Whipple's icy conglomerate model of H2O ice plus a mixture of other ices and dust.[57]

The initial structure of a comet nucleus is most probably a fine-grained porous material composed of a mixture of ices, predominantly H2O, and dust. The water ice is presumably amorphous and includes occluded gases. This structure is bound to undergo significant changes during the long residence of the nucleus in the Oort cloud or the Kuiper belt, due to internal radiogenic heating. The evolved structure of a comet nucleus is thus far from homogeneous: the porosity and average pore size change with depth and the composition is likely to become stratified. Such changes occur mainly as a result of gas flow through the porous medium: different volatiles – released by sublimation or crystallization of the amorphous ice – refreeze at different depths, at appropriate temperatures, and the gas pressure that builds up in the interior is capable of breaking the fragile structure and alter the pore sizes and porosity. These processes have been modelled and followed numerically. However, many simplifying assumptions are necessary and the results are found to depend on a large number of uncertain parameters. Thus porous comet nuclei may emerge from the long-term evolution far from the sun in three different configurations, depending on the thermal conductivity, porous structure, radius, etc.: a) preserving their pristine structure throughout; b) almost completely crystallized (except for a relatively thin outer layer) and considerably depleted of volatiles other than water and c) having a crystallized core, layers including large fractions of other ices and an outer layer of unaltered pristine material. Liquid cores may be obtained if the porosity is very low. The extent of such cores and the length of time during which they remain liquid are again determined by initial conditions, as well as by physical properties of the ice. If, in addition to the very low porosity, the effective conductivity is low, it seems possible to have both an extended liquid core, for a considerable period of time, and an outer layer of significant thickness that has retained its original pristine structure.[58]

The Rosetta Mission

The Rosetta Mission. The Rosetta spacecraft with the comet that it is chasing.

The Rosetta mission was launched in early 2004 by the Guiana Space Centre in French Guiana. The mission for the Rosetta spacecraft was to follow a comet and collect data on it.[59] Being the first spacecraft to orbit a comet, the goal was to understand the physical and chemical compositions of many aspects of the comet, observe the comets nucleus, as well as make connections about the Solar System.[59] The comet that the mission followed is called 67P/Churyumov–Gerasimenko and was discovered by Klim Ivanovich Churyumov and Svetlana Ivanova Gerasimenko.[59] After making contact with the comet, many observations were made that changed what we knew about comets. A very surprising discovery is that as the comet travels, it releases an increasing amount of water vapor.[60] That water is also different from that on Earth, being heavier because it contains more deuterium.[60] This comet was also found to be made from a cold space cloud, which is why it is made of dust and ice loosely compacted.[60] To investigate the nucleus of the comet, the Rosetta spacecraft passed radio waves through the comet.[60] This experiment showed that the head of the comet was very porous.[60] A computer model shows that there are many pits all over the comet that are very wide and deep.[60] The composition of the comet led scientists to be able to infer the comet's formation. They believe it was a rather gentle formation as the comet is so loosely compacted.[60] The mission lasted for over a decade and was a very important mission for the study of comets.

Spacecraft targets

Since 1995, a total of 8 comets have been visited by spacecraft. These were the comets Halley, Borrelly, Giacobini–Zinner, Tempel 1, Wild 2, Hartley 2, Grigg–Skjellerup and Churyumov–Gerasimenko, generating a host of new findings. In addition, the spacecraft Ulysses unexpectedly traversed the tail of Comet McNaught.

References

[20] [21]

[25]

  1. ^ Schechner Genuth, Sara (1999). Comets, popular culture, and the birth of modern cosmology. Princeton University Press. ISBN 0-691-00925-2. OCLC 932169368.[page needed]
  2. ^ Ridpath, Ian (8 July 2008). "Comet lore". A brief history of Halley's Comet. Retrieved 14 August 2013.
  3. ^ Sagan & Druyan 1997, p. 14
  4. ^ "Chinese Oracle Bones". Cambridge University Library. Archived from the original on 5 October 2013. Retrieved 14 August 2013.
  5. ^ Musset, Lucien (1 November 2005) [1989]. La Tapisserie de Bayeux: œuvre d'art et document historique [The Bayeux Tapestry: Annotated Edition]. Translated by Rex, Richard. Woodbridge, United Kingdom: Boydell & Brewer Ltd. p. 272. ISBN 978-1-84383-163-1.
  6. ^ "Long Live the King – Scene 1". Reading Borough Council (Reading Museum Service). Retrieved 14 August 2013.
  7. ^ a b Ley, Willy (October 1967). "The Worst of All the Comets". For Your Information. Galaxy Science Fiction. pp. 96–105.
  8. ^ Köehler, Ulrich (2002), "Meteors and comets in ancient Mexico", Catastrophic events and mass extinctions: Impacts and beyond, Geological Society of America, doi:10.1130/0-8137-2356-6.1, ISBN 978-0-8137-2356-3
  9. ^ Needham, Joseph, Science and Civilisation in China: Volume 3, Mathematics and the Sciences of the Heavens and the Earth, pp. 430–433, Cambridge University Press, 1959 ISBN 0521058015.
  10. ^ Needham, J. (1974-05-02). "Astronomy in Ancient and Medieval China". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 276 (1257): 67–82. Bibcode:1974RSPTA.276...67N. doi:10.1098/rsta.1974.0010. ISSN 1364-503X. S2CID 119687214.
  11. ^ Pandey, Nandini B. (2013). "Caesar's Comet, the Julian Star, and the Invention of Augustus". Transactions of the American Philological Association. 143 (2): 405–449. doi:10.1353/apa.2013.0010. ISSN 1533-0699. S2CID 153697502.
  12. ^ Ramsey, John T. (1999). "Mithridates, the Banner of Ch'ih-Yu, and the Comet Coin". Harvard Studies in Classical Philology. 99: 197–253. doi:10.2307/311482. ISSN 0073-0688. JSTOR 311482.
  13. ^ Alexander, Rachel. Myths, Symbols and Legends of Solar System Bodies by Rachel Alexander. 1st Ed. 2015.. ed. 2015. The Patrick Moore Practical Astronomy Ser., 177. Web.
  14. ^ Gurval, Robert A. (1997). "Caesar's Comet: The Politics and Poetics of an Augustan Myth". Memoirs of the American Academy in Rome. 42: 39–71. doi:10.2307/4238747. ISSN 0065-6801. JSTOR 4238747.
  15. ^ Aristotle (1980) [350 BCE]. "Book I, part 6". Meteorologica. Webster, E. W. (trans.). ISBN 978-0-8240-9601-4.
  16. ^ Aristotle (1980) [350 BCE]. "Book I, part 7". Meteorologica. Webster, E. W. (trans.). ISBN 978-0-8240-9601-4.
  17. ^ a b McCartney, Eugene S. (1929). "Clouds, Rainbows, Weather Galls, Comets, and Earthquakes as Weather Prophets in Greek and Latin Writers". The Classical Weekly. 23 (1): 2–8. doi:10.2307/4389350. ISSN 1940-641X. JSTOR 4389350.
  18. ^ Heidarzadeh, Tofigh (2008). A History of Physical Theories of Comets, From Aristotle to Whipple. Archimedes. Vol. 19. Springer Netherlands. doi:10.1007/978-1-4020-8323-5. ISBN 978-1-4020-8322-8. ISSN 1385-0180.
  19. ^ Olson, Roberta J. M. (1984). "...And They Saw Stars: Renaissance Representations of Comets and Pretelescopic Astronomy". Art Journal. 44 (3): 216–224. doi:10.2307/776821. ISSN 0004-3249. JSTOR 776821.
  20. ^ a b Heidarzadeh(2008)
  21. ^ a b Barker(1993)
  22. ^ Sagan & Druyan 1997, p. 26
  23. ^ Van Der Sluijs, Marinus Anthony (2009). "Hll: Lord of the Sickle". Journal of Near Eastern Studies. 68 (4): 269–282. doi:10.1086/649611. ISSN 0022-2968. S2CID 222453417.
  24. ^ Kennedy, E. S. (1957). "Comets in Islamic Astronomy and Astrology". Journal of Near Eastern Studies. 16 (1): 44–51. doi:10.1086/371369. ISSN 0022-2968. JSTOR 542464. S2CID 161404999.
  25. ^ a b Pena(1557)
  26. ^ "Cultural history of comets". www.mpg.de. Retrieved 2019-12-01.
  27. ^ Christianson, J. R.; Brahe, Tycho (1979). "Tycho Brahe's German Treatise on the Comet of 1577: A Study in Science and Politics". Isis. 70 (1): 110–140. Bibcode:1979Isis...70..110C. doi:10.1086/352158. ISSN 0021-1753. JSTOR 230882. S2CID 144502304.
  28. ^ "A Brief History of Comets I (until 1950)". European Southern Observatory. Archived from the original on 9 December 2012. Retrieved 14 August 2013.
  29. ^ Sagan & Druyan 1997, p. 37
  30. ^ Christianson, John (2020). Tycho Brahe and the Measure of the Heavens. The University of Chicago: Reaktion Books. ISBN 978-1-78914-271-6.[page needed]
  31. ^ Cowen, Ron (1992). "Comets: Mudballs of the Solar System?". Science News. 141 (11): 170–171. doi:10.2307/3976631. ISSN 0036-8423. JSTOR 3976631.
  32. ^ Barker, Peter; Goldstein, Bernard R. (2001). "Theological Foundations of Kepler's Astronomy". Osiris. 16: 88–113. Bibcode:2001Osir...16...88B. doi:10.1086/649340. ISSN 0369-7827. JSTOR 301981. S2CID 145170215.
  33. ^ "Comets in History". Center for Science Education at the Space Sciences Laboratory. Retrieved 14 August 2013.
  34. ^ "Comets – from Galileo to Rosetta" (PDF). University of Padua. Retrieved 14 August 2013.
  35. ^ Newton, Isaac (1687). "Lib. 3, Prop. 41". Philosophiæ Naturalis Principia Mathematica. Royal Society of London. ISBN 978-0-521-07647-0.
  36. ^ Sagan & Druyan 1997, p. 143.
  37. ^ "Comets in Newtonian Physics". A History of Physical Theories of Comets, from Aristotle to Whipple. Archimedes. Vol. 19. Springer Netherlands. 2008. pp. 89–124. doi:10.1007/978-1-4020-8323-5_4. ISBN 978-1-4020-8322-8. ISSN 1385-0180.
  38. ^ a b c d Ley, Willy (April 1967). "The Orbits of the Comets". For Your Information. Galaxy Science Fiction. pp. 55–63.
  39. ^ Halleio, Edmundo (1705). "Astronomiæ Cometicæ Synopsis". Philosophical Transactions. 24 (289–304): 1882–1899. Bibcode:1704RSPT...24.1882H. doi:10.1098/rstl.1704.0064.
  40. ^ Pepys, Samuel (1665). "March 1st". Diary of Samuel Pepys. ISBN 978-0-520-22167-3.
  41. ^ Sagan & Druyan 1997, pp. 48–49
  42. ^ Sagan & Druyan 1997, p. 93
  43. ^ Pigatto, Luisa (December 2009). "The correspondence of Giovanni Santini and Guiseppe Lorenzoni, directors of the Astronomical Observatory of Padua in the 19th Century". Annals of Geophysics. 52: 595–604.
  44. ^ Pigatto, L. (1988): Santini e gli strumenti della Specola, in Giovanni Santini astronomo, «Atti e Memorie dell’Accademia Patavina di Scienze, Lettere ed Arti», (Padova), XCIX (1986–1987), 187–198.
  45. ^ Kronk, Gary W. "2P/Encke". Gary W. Kronk's Cometography. Retrieved 14 August 2013.
  46. ^ Periodic Comet Numbers, Periodic Comet Numbers
  47. ^ McKillop, Alan Dugald (1942). The Background of Thomson's Seasons. p. 67. ISBN 9780816659500.
  48. ^ Sagan & Druyan 1997, pp. 306–307
  49. ^ Sagan & Druyan 1997, p. 85
  50. ^ Sagan & Druyan 1997, p. 126
  51. ^ Kronk, Gary W. "3D/Biela". Gary W. Kronk's Cometography. Retrieved 14 August 2013.
  52. ^ Sagan & Druyan 1997, p. 110
  53. ^ Whipple, F. L. (1950). "A comet model. I. The acceleration of Comet Encke". The Astrophysical Journal. 111: 375. Bibcode:1950ApJ...111..375W. doi:10.1086/145272.
  54. ^ Calder, Nigel (2005). Magic Universe:A Grand Tour of Modern Science. p. 156. ISBN 9780191622359.
  55. ^ Pomeroy, Ross (March 2016). "Large Comets May Have Liquid Water Cores. Could They Contain Life?". Real Clear Science.
  56. ^ Bosiek, Katharina; Hausmann, Michael; Hildenbrand, Georg (2016). "Perspectives on Comets, Comet-like Asteroids, and Their Predisposition to Provide an Environment That Is Friendly to Life". Astrobiology. 16 (4): 311–323. Bibcode:2016AsBio..16..311B. doi:10.1089/ast.2015.1354. PMID 26990270.
  57. ^ Lewis, John S. (September 1996). "Hazards Due to Comets and Asteroids. Edited by Tom Gehrels, Univ. of Arizona Press, Tucson, 1994". Icarus. 123 (1): 245. Bibcode:1996Icar..123..245L. doi:10.1006/icar.1996.0152. ISSN 0019-1035.
  58. ^ Prialnik, Dina (2000), "Physical Characteristics of Distant Comets", Minor Bodies in the Outer Solar System, Eso Astrophysics Symposia, Springer-Verlag, pp. 33–49, doi:10.1007/10651968_4, ISBN 3-540-41152-6
  59. ^ a b c Taylor, M. G. G. T. (May 29, 2017). "The Rosetta mission orbiter science overview: the comet phase". Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences. 375 (2097). arXiv:1703.10462. Bibcode:2017RSPTA.37560262T. doi:10.1098/rsta.2016.0262. PMC 5454230. PMID 28554981.
  60. ^ a b c d e f g "Highlights from the Rosetta Mission Thus Far". ESA Science. September 1, 2019.

Sources

  • "Comets in Newtonian Physics". A History of Physical Theories of Comets, from Aristotle to Whipple. Archimedes. Vol. 19. Springer Netherlands. 2008. pp. 89–124. doi:10.1007/978-1-4020-8323-5_4. ISBN 978-1-4020-8322-8. ISSN 1385-0180.
  • Barker, Peter, and Bernard R. Goldstein. “Theological Foundations of Kepler's Astronomy.” Osiris, vol. 16, 2001, pp. 88–113. Retrieved 2019-11-26.
  • Christianson, J. R., and Tycho Brahe. “Tycho Brahe's German Treatise on the Comet of 1577: A Study in Science and Politics.” Isis, vol. 70, no. 1, 1979, pp. 110–140. Retrieved 2019-11-26.
  • Kennedy, E. S. “Comets in Islamic Astronomy and Astrology.” Journal of Near Eastern Studies, vol. 16, no. 1, 1957, pp. 44–51. Retrieved 2019-11-26.
  • McCartney, Eugene S. “Clouds, Rainbows, Weather Galls, Comets, and Earthquakes as Weather Prophets in Greek and Latin Writers (Concluded).” The Classical Weekly, vol. 23, no. 2, 1929, pp. 11–15. Retrieved 2019-11-26.
  • Needham, J. “Astronomy in Ancient and Medieval China.” Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 276, no. 1257, 1974, pp. 67–82. Retrieved 2019-11-26.
  • Pamdey, Nnadini. “Caesar's Comet, the Julian Star, and the Invention of Augustus.” Transactions of the American Philological Association (1974–2014), vol. 143, no. 2, 2013, pp. 405–449. Retrieved 2019-11-26.
  • Ramsey, John T. “Mithridates, the Banner of Ch'ih-Yu, and the Comet Coin.” Harvard Studies in Classical Philology, vol. 99, 1999, pp. 197–253. Retrieved 2019-11-26.
  • Robert A. Gurval. “Caesar's Comet: The Politics and Poetics of an Augustan Myth.” Memoirs of the American Academy in Rome, vol. 42, 1997, pp. 39–71. Retrieved 2019-11-26.
  • Roberta J. M. Olson. “...And They Saw Stars: Renaissance Representations of Comets and Pretelescopic Astronomy.” Art Journal, vol. 44, no. 3, 1984, pp. 216–224. Retrieved 2019-11-26.
  • Ron Cowen. “Comets: Mudballs of the Solar System?” Science News, vol. 141, no. 11, 1992, pp. 170–171. Retrieved 2019-11-26.
  • Sagan, Carl; Druyan, Ann (1997). Comet. ISBN 9780747276647.
  • Van Der Sluijs, Marinus Anthony. “Hll: Lord of the Sickle.” Journal of Near Eastern Studies, vol. 68, no. 4, 2009, pp. 269–282. Retrieved 2019-11-26.
This page was last edited on 28 July 2023, at 08:53
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.